
PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 1

Project acronym: PrEstoCloud

Project full name:
Proactive Cloud Resources Management at the Edge

for efficient Real-Time Big Data Processing

Grant agreement number: 732339

D2.3 Conceptual Architecture

Deliverable Editor: Nenad Stojanovic, Nissatech

Other contributors: ICCS, CNRS, Ubitech, ActiveEon, JSI, SAG

Deliverable Reviewers: Ubitech, CVS

Deliverable due date: 30/09/2017

Submission date: 31/03/2018

Distribution level: Public

Version: 1.4

This document is part of a research project funded
by the Horizon 2020 Framework Programme of the European

Union

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 2

LIST OF CHANGES AS COMPARED TO 1
ST

 SUBMISSION

Deliverable D2.3 is being resubmitted, in order to address the reviewers’ recommendations following the
outcome of the 1st interim review of the PrEstoCloud Project. In particular, the revisions aim at the
rectification of the following recommendations:

 Recommendation 1

“It is contradictory that the platform adopts a lambda architecture which uses a batch
layer and real-time layer and the batch and real-time processing is not a requirement of
the platform (FR-65). Please clarify”

 Recommendation 2

“The components of the architecture are centralized and will run in one cloud, probably
in the same region. The architecture should take into account the multicloud nature of
the project and probably replicate most of the critical components both for availability
and performance reasons.”

 Recommendation 3

“Please, revise the available assets”

 Recommendation 4

“Mobile Context Analyzer available assets: “Scalable stream data storage and
distributed stream processing.”

 Recommendation 5

“There is no storage for streams, please clarify. Later you mention ESPER, which is not
scalable. On page 30 Storm is mentioned. Which CEP is going to be used?”

 Recommendation 6

“Apache Calcite is not streaming engine, please update the deliverable.”

 Recommendation 7

“Page 31 “Open Source workflows scheduler (Java)”, which one? Was it described in the
SotA deliverable? The same kind of sentence is repeated several times along the
document.”

First, to address the 1st issue we would like to note that the mentioned requirement FR-65 is about the
reconfiguration of the methods for data processing (real-time, batch), as described in the deliverable D2.2,
page 38:

“The system should enable an easy reconfiguration of the data processing methods, usually
done in the interaction with users (GUI)”.

It is defined as “Should Have” priority and it is not selected for the conceptual architecture, as depicted in
Table 12. The requirement that is related to the batch and real-time processing is FR-45 in D2.2 (page 26):

“Ability to provide new methods for data processing (real-time, batch)”.

This requirement can be found in the mappings shown in Table 14, i.e. it is one of the main requirements
for the Platform.

Our responses to the 2nd recommendation are included at the end of section 4.1 “Conceptual Architecture:
high level view”.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 3

Regarding the 3rd recommendation, we assume that the exploitable assets are meant. As the exploitable
assets are part of the exploitation planning, this issue has been already addressed in “WP8: Dissemination
& Exploitation” in the deliverable „D8.7: Exploitation plan and reports - Iteration 1“.

Regarding the 4th recommendation, we note here that the Mobile Context Analyser provides short-term
stream data storage using Elastic search in order to perform context analysis. For details please refer to
D3.5.1, "Mobile Context Analyser - Iteration 1", due March 2018.

As far as the 5th recommendation is concerned, several CEP engines will be reviewed and the one that fits
best the PrEstoCloud requirements will be selected. This work will be reported in deliverable D5.1
"Situation Detection Mechanism - Iteration 1", due April 2018. Additionally, the Mobile Context Analyser
provides short-term stream data storage.

Regarding the 6th recommendation, we removed the reference to Apache Calcite, because it is not relevant
and we will not use it. Additionally, we replaced "Open source CEP engines (e.g. Esper)" with "Open source
stream computing and complex event processing engines (e.g. Siddhi, Flink, Esper, Drools)".

Finally, our responses to the 7th recommendation are included at the end of section 5.2.1 “Autonomic Data
Intensive Application Manager”.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 4

Change Log

Version Date Amended by Changes

0.1 15/08/2017 Nissatech 1st version

0.2 20/08/2017 All technical partners First comments

0.3 03/09/2017 ICCS, CNRS, ActiveEon, Ubitech,
Nissatech, JSI

Initial inputs in all sections

0.5 11/09/2017 ICCS, ActiveEon, CNRS,
Nissatech

Refinements, architecture

0.6 18/09/2017 ICCS, CNRS, ActiveEon, Ubitech,
Nissatech

Refinements, details in each layers,
interaction between components

0.8 29/09/2017 ICCS, CNRS, ActiveEon, Ubitech,
JSI, Nissatech

Refinements, details about components

0.9 5/10/2017 ICCS, CNRS, ActiveEon, Ubitech,
JSI, Nissatech

Mapping of the requirements

0.95 10/10/2017 Nissatech Consolidated version

1.0 12/10/2017 Ubitech, CVS Reviewed version

1.0 13/10/2017 SoftwareAG Submission of the deliverable

1.1 07/02/2018 All technical partners Analysis of the reviewers’ recommendations
following the outcome of the 1st Review

1.2 20/03/2018 Nissatech, ICCS, CNRS,
ActiveEon

Review comments addressed

1.3 28/03/2018 Nissatech Consolidated version ready for review

1.4 31/03/2018 Nissatech Final version

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 5

Table of Contents

List of Changes as Compared to 1st Submission .. 2

Change Log .. 4

Table of Contents .. 5

List of Tables .. 7

List of Figures ... 8

List of Abbreviations .. 9

1. Executive Summary... 10

2. Introduction .. 11

2.1 Scope ... 11

2.2 Structure .. 11

3. Methodology .. 12

3.1 The base ... 12

3.2 The method ... 12

Modeling Techniques .. 13

4. Conceptual Architecture ... 15

4.1 Conceptual Architecture: high level view .. 15

4.2 PrEstoCloud Architecture Walkthrough .. 17

4.2.1 Design-time phase ... 17

4.2.2 Initial Placement phase .. 18

4.2.3 Reconfiguration Phase ... 20

4.3 Advantages .. 21

4.3.1 Extending the Lambda architecture for Big data processing ... 21

4.3.2 Self-adaptive architecture: Realizing MAPE-K ... 23

4.3.3 Innovations .. 24

5. Components Specifications .. 26

5.1 Meta-Management Layer .. 26

5.1.1 Workload Predictor .. 26

5.1.2 Mobile Context Analyzer ... 27

5.1.3 Situation Detection Mechanism .. 28

5.1.4 Application Fragmentation & Deployment Recommender ... 29

5.1.5 Resources Adaptation Recommender ... 30

5.1.6 Meta-Management layer: an integrated view ... 31

5.2 Control Layer ... 33

5.2.1 Autonomic Data Intensive Application Manager ... 33

5.2.2 Autonomic Resource Manager .. 34

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 6

5.2.3 Application Placement & Scheduling Controller .. 35

5.2.4 Security Enforcement Mechanism ... 36

5.2.5 Mobile On/Offload Processing... 38

5.2.6 Control layer: an integrated view .. 39

5.3 Cloud-Edge Communication Layer .. 41

5.3.1 Communication and Message Broker .. 41

5.4 Cloud-infrastructure and Device layers ... 41

5.4.1 Spatio-Temporal Processing Library .. 41

5.4.2 Inter-Site Network Virtualization ... 43

5.4.3 On/Offloading Agents .. 45

5.4.3 Monitoring Probes ... 45

5.4.5 Cloud-Edge Communication Layer: an integrated view .. 46

6. Interfaces Documentation .. 48

6.1 Interfaces of the Meta-management Layer Components ... 48

6.2 Interfaces of the Control Layer Components .. 51

6.3 Interfaces to the Cloud-Edge Communication Layer ... 55

Inter-Site Network Virtualization .. 55

On/Offloading Agents ... 56

7. Conceptual Architecture Validation.. 57

7.1 Functional Requirements Mapping to Components ... 57

7.2 Must Have Requirements Coverage .. 60

7.3 Should Have Requirements Coverage ... 62

7.4 Mapping of Requirements to Phases .. 63

8. Conclusions ... 64

9. References .. 65

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 7

List of Tables
Table 1: Interfaces/Connection Types – Mobile Context Analyzer --49

Table 2: Interfaces/Connection Types - Situation Detection Mechanism --49

Table 3: Interfaces/Connection Types - Application Fragmentation & Deployment Recommender --------50

Table 4: Interfaces/Connection Types - Application Fragmentation & Resources Adaptation Recommender
 --50

Table 5: Interfaces/Connection Types – Autonomic Data Intensive Application Manager --------------------52

Table 6: Interfaces/Connection Types - Autonomic Resource Manager ---53

Table 7: Interfaces/Connection Types - Application Placement & Scheduling Controller ---------------------54

Table 8: Interfaces/Connection Types – Security Enforcement Mechanism --------------------------------------54

Table 9: Interfaces/Connection types – Mobile On/Offload Processing ---55

Table 10: Interfaces/Connection Types – Inter-Site Network Virtualization --------------------------------------55

Table 11: Interfaces/Connection types – Mobile On/Offloading Agents ---56

Table 12: Summary of most important functional requirement priorities and their coverage on the
conceptual architecture --58

Table 13: “Must have” functional requirements mapped to components --61

Table 14: “Should have” functional requirements mapped to components --------------------------------------62

Table 15: Mapping of the requirements ---63

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 8

List of Figures
Figure 1: Initial conceptual architecture ---12

Figure 2: Methodology for the formalization of the architecture--13

Figure 3: PrEstoCloud Conceptual Architecture --16

Figure 4: Lambda architecture --22

Figure 5: Lambda architecture design pattern adopted in the PrEstoCloud architecture ---------------------22

Figure 6: Enabling management of QoS of a big data system ---23

Figure 7: Mapping to MAPE-K model ---23

Figure 8: MAPE-K phases mapped to the architecture ---24

Figure 9: PrEstoCloud Meta-Management Layer – Sequence Diagram ---32

Figure 10: Security Enforcement Mechanism Interactions --37

Figure 11: Control layer sequence diagram ---40

Figure 12: Spatio-Temporal Processing Library Interactions --42

Figure 13: Cloud-Edge Communication Layer Sample interaction ---47

Figure 14 : Meta-management Layer Component Diagram ---48

Figure 15: Control layer - interaction between components --51

Figure 16: Control layer – component diagram --52

Figure 17: Illustration of requirements mapping ---60

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 9

List of Abbreviations

Acronym Title

API Application Programming Interface

BDVA Big Data Value Association

CEP Complex Event Processing

Dx Deliverable (where x defines the deliverable identification number e.g. D1.1.1)

EDA Event Driven Architecture

ETL Extract Transform Load

GPS Global Positioning System

GTP General Trip Preferences

HTTP HyperText Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HPC High-Performance Computing

I/O Input / Output

ICT Information and Communication Technologies

IoT Internet of Things

JSON JavaScript Object Notation

MOM Message Oriented Middlelware

PubSub Publish-Subscribe Mechanism

REST Representational State Transfer

SQL Structured Query Language

TB Terabyte

WP Work Package

XML Extensible Markup Language

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 10

1. Executive Summary
This deliverable reports on the work done in WP2 in the context of developing a conceptual architecture
that will satisfy very challenging requirements from the technical (deliverables D2.2 and D2.4) and use case
(deliverable D7.1) point of view. The envisioned PrEstoCloud Platform sublimates ideas, based on the past
work of partners from different technological areas, like Cloud computing, Big Data, Task scheduling,
Adaptive systems and intends to create a novel computing and management infrastructure. It will enable
the efficient deployment and realization of data-intensive applications, therefore the development of a
proper architecture is a correspondingly challenging task.

However, through detailed and iterative analyses of the requirements and evaluation of the existing
research results and relevant technologies, we did manage to create a conceptual architecture which is
comprehensive enough to properly glue and harmonize different research ideas (around a common goal),
but at the same time, technologically sound and based on the existing results of partners, in order to
guarantee its efficient implementation and deployment in different infrastructures, starting from the
selected use cases.

Indeed, by using a layer-based approach, we designed an architecture which enable complex processing
within a particular layer and an efficient communication between layers in order to realize complex
processing pipelines

In order to reflect the distributed nature of the system and the need to make the loose coupling between
components, the data communication architecture postulates on the principles of event-driven
architecture (EDA), having the communication and message broker as the central interaction hub.
Moreover, EDA enables a proper scaling of the platform, by supporting an easy extension with new types of
data sources (resources) and data processing elements. This is one of the fundamental properties for
supporting the work with data-intensive applications (real-time big data applications) which are the focal
point of the platform.

In parallel, through a powerful task scheduling and adaptation mechanism, the architecture supports an
efficient detection of adaptation opportunities in the underlying computing infrastructure and an effective
implementation of them, creating the basis for an adaptive management of complex applications. The
adaptation mechanism covers the entire stack of processing resources, starting from edge devices till multi
cloud infrastructure, making the Platform unique comparing to the state of the art.

Since PrEstoCloud aims to enable a continuous improvement (reconfiguration) of a complex computing
infrastructure, the architecture is based on the well-known self-adaptivity pattern: Monitor – Analyze –
Plan – Execute - Knowledge (MAPE-K model).

The deliverable explains the complex PrEstoCloud architecture through a comprehensive walkthrough,
demonstrating a huge (innovative) application potential and the technological soundness. It contains
details about all components and their interactions in order to realize complex scenarios, providing a
foundation for the implementation phase. Last but not least, the deliverable shows in details how the
functional requirements from the deliverable D2.2 are mapped to the presented architecture

We argue that the presented PrEstoCloud architecture is very innovative, enabling the realization of several
advanced scenarios that are challenging for existing architectures in different domains, like:

 Fog computing - PrEstoCloud architecture enables dynamic service replacement along the entire
fog computing infrastructure, from Edge to the Cloud and back

 Big data - the architecture enables continuous monitoring and improvement of the QoS in real-
time data analytics applications

 HPC – the architecture enables self-adaptive reconfiguration of deployed computing infrastructure.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 11

2. Introduction

2.1 Scope
The main goal of this deliverable is to provide details of the conceptual architecture that will serve as the
basis for the technical development of the system. This work documented in this deliverable has been
performed in the scope of WP2.

The deliverable is strongly influenced by several other deliverables:

- D2.1 that provides the analysis of the state of the art
- D2.2 that provides the list of requirements for the development of the system
- D2.4 that explains the data processing infrastructure
- D7.1 that describes use cases (and their requirements)

Since the envisioned Platform is very complex, this work also reflects the work of partners in different
research and technology areas (like Cloud computing, Big Data, Task scheduling, Adaptive systems) and
illustrates the connections to them, stating clearly our (unique) contributions.

This work will be used (and continued) in the work on the deliverable D6.1 Architecture of the PrEstoCloud
platform.

2.2 Structure

The rest of the document is structured as follows:

 Section 3 describes the methodological approach that was adopted for the development of the

conceptual architecture

 Section 4 present the conceptual architecture, including a walkthrough description of the main

processing flows. Furthermore, the section elaborates on the advantages of the proposed

architecture.

 Section 5 comprises detailed specifications for each layer. Each individual specification offers a

description and explains the purpose of a component, describes the inputs and outputs and

outlines its subcomponents.

 Section 6 elaborates on interfaces for each component. There are integrated components diagrams

for each layer, as well as a set of tables that illustrate the interfaces and interconnections of the

different elements of the platform.

 Section 7 validates the proposed conceptual architecture against the requirements defined in D2.2.

 Section 8 provides the conclusions and the summary of the document

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 12

3. Methodology

3.1 The base
Due to technological complexity of the envisioned system, as well as the very challenging requirements set
by the use cases, the work on the conceptual architecture has been performed through an intensive
collaboration of all partners (technical and use case providers).

The work method consists of an iterative refinement of the initial draft (cf. Figure 1) based on more
elaborated use cases requirements (D7.1) and a deeper analysis of the data processing infrastructure (D2.4)
driven by the list of requirements (D2.2).

Figure 1: Initial conceptual architecture

There are three main directions for the refinement:

- clarifying the limitations of the existing results of partners that are used as the technological basis

- providing details of the functional specification of components based on advanced scenarios from use
cases

- getting better understanding how different layers can work together in a more efficient way in order to
realize complex use case scenarios

3.2 The method

The overall methodology for the formalization of the architecture is an iterative combination of top-down
and bottom-up approaches, as presented in Figure 2.

The bottom-up approach aims to the partial specification of the platform based on the intended
functionality of the individual components and the identified innovations following the state-of-the-art
analysis, as well as the availability of data sources at each pilot location.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 13

On the other hand, the top-down approach enriches the specification using findings form the user

requirements analysis and use cases defined in D2.2 and D7.1 respectively.

Figure 2: Methodology for the formalization of the architecture

In this way, we have ensured that the work in WP2 is done in an efficient way and can exploit the results
from other WPs properly.

One of the main benefits of using such a methodology is a very deep understanding of the processing
pipelines (interactions between components, see Section 4.2 - walkthrough), which will make the technical
realization of this complex system easier to be managed (less risks).

Moreover, as indicated in Figure 2, this methodology represents an efficient work practice for the further
development and validation of the system.

Modeling Techniques

Currently, two approaches are in use for the architectural structure and processes — object-oriented
analysis and design, and structured analysis and design. Both have strengths and weaknesses that make
them suitable for different classes of problems; however, the object-oriented methodology is better for
complex, interactive, and changing systems with many interfaces, which are the kinds of systems we aim to
develop.

The object-oriented method takes a value-based approach to discover system capabilities. Use cases
describe the behavior between the system and its environment. From the use case, the functionalities that
the system must provide are derived. Those services are then realized by the internal structure of the
system elements in iterative steps until system elements are simple enough to build. The resultant set of
diagrams traces the composition of the system from its parts to the aggregated behavior captured within
the set of use cases.

Object-oriented approaches focus on interaction from the beginning, which has the beneficial side-effect of
defining the boundary between the system and its environment.

Sequence diagrams graphically illustrate the interactions the system must support. The "lifelines" of the
diagram gather the behavioral responsibilities of each "object" participating in the use case. These
responsibilities are the requirements to share data across the collection to produce the required result.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 14

Component diagrams are used in order to describe the main PrEstoCloud components and depict their
required and provided interfaces. This description reflects the way that these components are wired
together for forming a more complex software system.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 15

4. Conceptual Architecture
In this section we present the high level view of the architecture, describe the processing flow
(walkthrough) and elaborate on the novelty of the architecture.

4.1 Conceptual Architecture: high level view
The overall physical architecture of the Platform consists of several components distributed across different
layers. In the following text we describe these layers, while Figure 3 depicts the overall conceptual
architecture of the platform.

The PrEstoCloud architecture has been structured across 5 different layers:

 The Meta-management layer mainly consists of decision logic capabilities required for enhancing
the PrEstoCloud Control layer. Modules of this layer will use as input the situation details, the
variation of the Big Data streams and the context of the mobile devices at the extreme edge of the
network in order to recommend, at the appropriate time, the necessary adaptations of used
resources in the real-time processing network.

 The Control layer manages resources of the Cloud infrastructure layer and contains modules which
will monitor and manage cloud resources capabilities that can be extended to the edge of the
network. Moreover, this layer is responsible for the scheduling of big data applications execution
over the resources of the real-time processing network. The control layer detects available edge
resources. The control layer selects target resources for deployment and plan application
scheduling according to the recommendation of the meta management layer.

 The Cloud infrastructure layer will realize dynamic placement and scheduling capabilities allowing
the utilization of the extreme edge of the network, deployed to private clouds, jointly with public
clouds. The placement of microservices and application fragments will be handled based on
placement constraints reflecting the requirements of the expected behaviour of the application.
The infrastructure will realize constraints related to different properties like response time, security
constraints or other provider wishes.

 The Cloud-Edge communication layer contains the inter-site network virtualization for coping with
the need of connecting resources situated in multi-cloud environments and managing their
orchestration and provisioning across different and heterogeneous providers. This also includes the
control of the inter-sites network virtualization process in a secure way. This layer will also relay
data streams on and off the PrEstoCloud platform providing standard publish/subscribe event
brokering capabilities.

 The Devices layer consolidates any kind of device that can be used as a Big Data stream source or as
a mobile computational node at the extreme edge of the network.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 16

Figure 3: PrEstoCloud Conceptual Architecture

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 17

Below we include our responses regarding to the following reviewers’ recommendation:

Comment: The components of the architecture are centralized and will run in one cloud,
probably in the same region. The architecture should take into account the multicloud nature of
the project and probably replicate most of the critical components both for availability and
performance reasons.

Out of the 15 components that are part of the PrEstoCloud architecture, 4 are distributed by design:
On/Offloading Agents, Monitoring Probes, and Inter-Site Network Virtualization Gateways. These
components are all included in the Cloud-Edge Communication Layer. The last component that is part of
this particular layer, the Communication and Message Broker, will be implemented as a distributed broker,
with one instance in each federated cloud.
As for the other components, they are part of the Meta-Management Layer and the Control Layer. They
relate to job placement decision and actuation. Due to the nature of their work, they need to have a
centralized view of the available resources, as well as a tight integration. For example, the Workload
Predictor and the Mobile Context Analyzer infer context from the current situation of the application
deployed by PrEstoCloud, either with respect to resource utilization (both, cloud and edge), or to job
advancement. Based on the inferred situation, an adaptation of the deployment is recommended, e.g. by
mapping certain jobs to certain kind of resources. These recommendations are then enacted by the Control
Layer. These components work together so as to continuously optimize the resource usage and application
status based on the evolution of the workload.
The deployment information (constraints, specification, location) are expressed and exchanged as a TOSCA
file between each of these components, which is iteratively completed until the full deployment plan has
been finalized. Each of these components will be implemented as a service that can be restarted, and
whose state can be restored based on the last TOSCA specification, so as to avoid service failure due to an
error within an individual component.

4.2 PrEstoCloud Architecture Walkthrough

This subsection delves into the details of the PrEstoCloud conceptual architecture (Figure 3) by
providing a step-by-step usage walkthrough of the platform’s main software components. In order
to highlight the main functionalities of the PrEstoCloud components, we present their most
important interactions clustered in three main control flow phases. These involve the:

1. design-time phase

2. initial application placement phase

3. application reconfiguration phase

During the walkthrough of each of these phases, we describe the main steps for creating, updating,
placing, monitoring and reconfiguring a Big Data intensive application, using the PrEstoCloud
platform. We note that the placement and reconfiguration of the Big Data intensive application,
through PrEstoCloud, implies the necessary decisions and implementation actions for selecting and
adapting the underlying cloud-based or edge-enabled infrastructures. Below, each of these phases
are presented.

4.2.1 Design-time phase

The design-time phase involves all the preparatory actions that may be performed through
PrEstoCloud for enabling initial placement decisions. During this phase two important actions can
be performed with the assistance of PrEstoCloud components: i) the annotation of a cloud
application and ii) the definition of its placement and scalability requirements.

Step 1a: Annotation of the Cloud Application

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 18

i. The Cloud Application Developer annotates each method of the application with

certain metadata, coming from the PrEstoCloud semantic model, in order to

indicate its processing complexity as well as any potential deployment constraints

(e.g. can be deployed only cloud resources, edge resources could be used). This

metadata will subsequently guide the placement and the reconfiguration of the Big

Data intensive application.

Step 1b: Definition of Application Requirements

i. In parallel the DevOps formulates the application-specific placement and scalability

requirements that are used as input for the Application Fragmentation and

Deployment Recommender. These requirements correspond to SLA-based

constraints, preferences and scaling requirements that should be considered during

the initial placement or reconfiguration of the application.

ii. Once the Application requirements have been formulated the Application

Fragmentation and Deployment Recommender introspects and stores them.

Step 1c: Definition of Initial Infrastructure

In addition, the DevOps provide the initial (physical and/or virtual) infrastructure

on which the initial deployment will be carried out in the Cloud and Edge Resources

Repository. For example, this includes the credentials needed for the Autonomic

Resource Manager to connect and authenticate on public and private cloud

platforms, as well as means to contact the edge devices.

4.2.2 Initial Placement phase

The initial placement phase involves the interaction of all the appropriate PrEstoCloud components
for making initial placement decisions, implementing them and setting up monitoring mechanisms
for following up on the deployment status over cloud and edge resources.

Step 1: Initial Placement Decisions

i. The Autonomic Resource Manager collects information about all available Cloud

resources (i.e. flavours and instances) and Edge devices (i.e. types and specific

devices), and submits it to the Cloud and Edge Resources Repository.

ii. The Mobile Context Analyzer aggregates and infers information about the health

status of devices that could be considered for initial application fragment

deployment.

iii. The Application Fragmentation & Deployment Recommender, based on the

expressed application requirements, registers the possible application fragments (if

applicable) that can be deployed on separate resources and issues a

recommendation per each fragment (or the whole application if it is not possible to

be fragmented) about the flavours or types of cloud and/or edge devices that can

be used for deployment.

iv. Additionally, the Application Fragmentation & Deployment Recommender

generates a set of dependencies and requirements that span the boundaries of

cloud resources and reach the extreme edge of the network. Depending on the

metadata of the application and its fragments and based on the context of the

edge devices (inferred by the Mobile Context Analyzer) certain edge resources may

be deemed as appropriate or inappropriate for hosting certain application

fragments. In case that an acceptable placement recommendation cannot be

issued given the described requirements and the available cloud and edge

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 19

resources the process is aborted and the application developer or the DevOps is

informed about refining the described requirements.

v. The recommendations and requirements thereby generated by the Application

Fragmentation & Deployment Recommender are sent to the Resources Adaptation

Recommender in order to be expressed as an extended TOSCA specification. They

make up for a partial specification that will be completed by the Application

Placement and Scheduling Controller.

vi. The Application Placement and Scheduling Controller receives the partial TOSCA

specification file, and contacts the Cloud and Edge Resources repository to identify

the optimal configuration of the Big Data intensive application (i.e. commission VM

instances on a cloud provider or select specific edge devices). Based on the

available resources and existing constraints, the Application Placement and

Scheduling Controller completes the extended TOSCA specification by specifying

specific resources to be used. This information is send to the Autonomic Data-

Intensive Application Manager.

Step 2: Initial placement implementation

i. Upon the reception of the completed extended TOSCA specification file, the

Autonomic Data Intensive Application Manager parses it and extracts the

requested resources. The Autonomic Data Intensive Application Manager contacts

the Inter-site Network Virtualization to obtain the necessary network configuration

to be applied to the resources. The Autonomic Data Intensive Application Manager

creates a so-called “commissioning workflow”.

ii. The Autonomic Resource Manager receives the commissioning workflow and

creates the ad-hoc environments (e.g. VMs on clouds, containers on edge devices)

inside which the Big-Data tasks will be inserted. The Cloud and Edge Resources

Repository is updated (through the Autonomic Data Intensive Application

Manager) to reflect the instantiation changes (e.g. adding new VMs).

iii. The Autonomic Data Intensive Application Manager implements a sequence of

deployment actions. This corresponds to the enactment of a workflow consisting of

processing tasks to be executed on every infrastructure node. These may include

the acquisition of necessary libraries and executables, and the initialization of

services. In case of edge resources used the appropriate On/Offloading agents are

triggered for assigning to them processing application tasks.

iv. In parallel, the Security Enforcement Mechanism is contacted in order to ensure

the security of all connections between the processing resources that will be part

of the deployment topology.

Step 3: Monitoring setup

i. Once the core elements of the business logic of the application have been

instantiated, the Autonomic Resource Manager instructs the installation of

monitoring probes on each processing resource. These monitoring probes are

essential for following up on the health status of each of the commissioned

resources. The Cloud and Edge Resources Repository is updated (through the

Autonomic Data Intensive Application Manager) to reflect any changes in the

available resources (e.g. registering a new edge device, updating edge devices

status).

ii. The Autonomic Resource Manager is configured to collect information about all

Cloud Infrastructures used (i.e. flavours and instances) and Edge devices acquired

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 20

(i.e. types and specific devices), and submit it to the Cloud and Edge Resources

Repository (through the Autonomic Data Intensive Application Manager).

iii. Upon the detection of a new edge device, the Autonomic Data Intensive

Application Manager submits a related event to the Communication & Message

broker, to be received by any interested Meta-Management layer component (e.g.

Mobile Context Analyzer).

4.2.3 Reconfiguration Phase

The reconfiguration phase involves the whole control flow that engages appropriate PrEstoCloud
components for proactively or reactively adapting a certain Big Data intensive application
placement.

Step1: Feedback

i. The Monitoring Probes installed during the Initial Placement Phase, periodically

send data concerning the health of their host devices. Additionally, Monitoring

Probes may send data concerning the state of the Application which can also

trigger a reconfiguration of the topology. The data is sent in the form of events and

messages, to the Communication & Message Broker from which it can be

distributed to any PrEstoCloud component.

 As mentioned in the monitoring setup this also includes the detecting of

recently added edge devices.

ii. In parallel any streaming data coming from the Communication & Message Broker

is persisted in order to be used by the Workload Predictor for learning and deriving

future predictions about expected workload fluctuations. Such workload

fluctuations may lead to meaningful application reconfigurations for quality

assurance.

Step 2: Reconfiguration Decision

i. A series of events transmitted by the processing topology, or certain messages

coming from the Workload Predictor may trigger an application reconfiguration.

Based on this the Situation Detection Mechanism notifies and triggers the

Resources Adaptation Recommender. In the case of edge resources, the Mobile

Context Analyzer is responsible for detecting the health status of devices already

used, but also to track potential candidate edge resources to be used after a

reconfiguration.

ii. Based on the detected situation, the Application Fragmentation & Deployment

Recommender informs the Resources Adaptation Recommender about certain

Application Fragments that can be offloaded from edge devices to cloud resources

and vice versa (onloaded), along with their dependencies and requirements.

iii. The Resources Adaptation Recommender evaluates the Situation detected in

conjunction with the application requirements and issues a recommendation about

an update on the processing topology. This information is sent as a partial TOSCA

specification to the Application Placement and Scheduling Controller for verifying

the optimality of the new topology or enhancing the cloud resources instances to

be used (e.g. instead of scaling out using two m1.medium VMs, use one m1.large).

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 21

iv. The Application Placement and Scheduling Controller contacts the Cloud and Edge

Resource Repository. Based on all existing resources and the new constraints

generated by the Resource Adaptation Recommender, it generates an optimal

placement, as well as a list of transitional atomic actions to migrate the current

(existing) infrastructure to the new optimal one.

v. A special kind of reconfiguration may take place in case the topology involves edge

devices in proximity. In cases where connection to the cloud is broken or

completely lost, these devices search for other devices by leveraging the Spatio-

Temporal Processing Library and trying to create a Mesh Network.

Step 3: Reconfiguration Implementation

i. In the case that a new extended TOSCA specification document is sent by the

Resources Adaptation Recommender, the Application Placement and Scheduling

Controller contacts the Cloud and Edge Resources Repository, and the Autonomic

Data Intensive Application Manager to deploy the changes in the architecture.

ii. In the case of poor edge connectivity the devices communicate in a local Mesh

Network and exchange messages in order to fine-tune their processing activities.

Once Internet connectivity is restored, any intermediate processing results are sent

to the Mobile On/Offloading processing component which adds the Devices to the

Cloud and Edge Resources Repository and the Mesh Network is dissolved.

4.3 Advantages
We argue that the presented architecture is not “only” suitable for the realization of complex scenarios (as
given by selected use cases), but can also serve as an important contribution in the further development of
the modern software architectures.

We argue that the presented architecture is an important contribution to the design of the modern data-
intensive systems, especially those dealing with the dynamically changing real-time big data, which
requires:

- capabilities for processing big data, in order to cope with huge real-time streams and
- ability for self/adaptivity, in order to cope with the dynamicity in the data

In the following two subsections we elaborate on these two characteristics.

4.3.1 Extending the Lambda architecture for Big data processing

Lambda architecture1 is a data-processing architecture designed to handle massive quantities of data by
taking advantage of both batch- and stream-processing methods. It is divided into three processing layers:
the batch layer, serving layer, and speed layer, as shown in the Figure 4.

1 https://en.wikipedia.org/wiki/Lambda_architecture

https://en.wikipedia.org/wiki/Lambda_architecture

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 22

Figure 4: Lambda architecture

Figure 5 illustrates a part of the architecture that implements Lambda pattern.

Figure 5: Lambda architecture design pattern adopted in the PrEstoCloud architecture

Moreover, if we put this pattern in a broader context as illustrated in Figure 6, the role of the entire
architecture becomes clearer: it enables monitoring and management of the QoS (or SLA) for the big data
system.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 23

Figure 6: Enabling management of QoS of a big data system

4.3.2 Self-adaptive architecture: Realizing MAPE-K

Since PrEstoCloud aims to enable a continuous improvement (reconfiguration) of a complex computing
infrastructure, the conceptual architecture follows, on a higher abstraction level, the self adaptivity
pattern: Monitor Analyze Plan Execute Knowledge [IBM05] (MAPE-K model; so called “architectural
blueprint for autonomic computing”, introduced by IBM).

Figure 7 illustrates the mapping between these layers and MAPE-K model.

Figure 7: Mapping to MAPE-K model

Figure 8 provided below illustrates the mapping of MAPE-K to the presented conceptual architecture of
PrEstoCloud.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 24

Figure 8: MAPE-K phases mapped to the architecture

4.3.3 Innovations

The architecture enables the realization of several advanced scenarios, which seem to be challenging for
existing architectures in following domains.

High Performance Computing - HPC
PrEstoCloud architecture enables self-adaptive reconfiguration of deployed computing infrastructure:

- starting from detecting/predicting the need for changes,
- through analyzing all available factors (context) for recommending the most efficient

reconfiguration and
- defining the optimal redeployment,
- till automatically assigning required resources to the running processing (tasks)

Fog computing
PrEstoCloud architecture enables dynamic service replacement along the entire fog computing
infrastructure, from Edge to the Cloud and back, through:

- continuous monitoring of the status of the computing resources and the application context
- detecting/predicting the decrease in performance (increase in resources)
- deciding when and where to offload the service
- realizing the replacement in the most efficient way

Big data
PrEstoCloud architecture enables continuous monitoring and improvement of the QoS in real-time data
analytics applications, through:

- continuous monitoring of the performance data required for QoS
- prediction of the situation where QoS will be violated
- real-time recommendations for the reconfiguration
- optimal realization of the reconfiguration (based on the global context)

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 25

Some of the work related to dissemination and communication will be in creating awareness about our
work (esp. conceptual part) in relevant communities.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 26

5. Components Specifications
This section details every component included in the PrEstoCloud architecture described in previous
section. The description of every component relies on the following fields:

 Function: Describes the purpose and main role of the component within the PrEstoCloud
architecture

 Subcomponent: Lists the components (if applicable) that are running inside the described
component.

 Sources: Lists the components that provide data or any other input to the described component.

 Consumer: Lists the components that feed from the activities or data produced by the described
component.

 Responsible Partners: The partner or partners that are responsible for the implementation of the
specific artifact.

 Available assets: Describes the available assets (tools, methodologies, techniques, etc.) that are
foreseen to be used for the development of the described component.

The following subsections describe the components grouped by their respective layers.

5.1 Meta-Management Layer
The Meta-Management layer mainly consists of decision logic capabilities required for enhancing the
PrEstoCloud Control layer (e.g. Autonomic Resources Manager, Autonomic Data-Intensive Application
Manager). This layer involves the following modules: Workload Predictor, Mobile Context Analyzer,
Situation Detection Mechanism, Application Fragmentation & Deployment Recommender (DIAFDRecom),
and Resources Adaptation Recommender (RARecom).

5.1.1 Workload Predictor

Good resource management is very important in the cloud and workload prediction is a crucial step
towards achieving good resource management. While it is possible to predict the workloads of long-running
tasks based on the seasonality in their historical workloads, it is difficult to do so for tasks which do not
have such recurring workload patterns.

This component realizes a novel workload prediction approach that takes the statistical properties of a pool
of tasks to help predict the workload patterns of new tasks. Our scheme integrates clustering and machine
learning to maximize the effectiveness of learning and, hence, improves workload prediction accuracy. The
main benefit is the possibility to process high-dimensional data and can be applied directly to memory, disk
bandwidth, and network bandwidth demand predictions.

Our approach learns the models of the normal behaviour of different tasks. This is crucial step in enabling a
proper understanding of the characteristics of a task and consequently to ensure better modelling of
predictions. If using the whole dataset, the predictions are imprecise (too coarse grained).

One of the most important advantage is a strong clustering approach that works in high dimensional
spaces. It generates the best possible separation of the problem space. For example, the clusters are
compact and differ from each other.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 27

Workload predictor

Function  Receive, pre-process and store the data relevant for workload prediction

 Understand and model the types of the workloads based on the provided data
(infrastructure, applications)

 Predict the workload of the underlying cloud infrastructure

 Enable refinement process (self-adaptation)

Subcomponents
Event listener, Pre-processor, Storage

Clustering engine

Prediction engine

Real-time predictor

Input  Monitoring sensors from cloud and edge resources

 Application data (profile)

Output  Real-time predictions

Sources Communication & Message Broker (monitoring data)

Consumers Situation Detection Mechanism

Beyond SOTA Data-driven (unsupervised) modelling of the normal behaviour of an underlying system
(computing infrastructure) and its application in real-time for diagnosis and predicting
the behaviour

Responsible
Partners

Nissatech

Available assets  D2Lab framework

 Open source CEP engines (e.g. Siddhi)

5.1.2 Mobile Context Analyzer

The Mobile Context Analyzer will perform an efficient analysis of the status of edge devices based on
machine learning techniques and the PrEstoCloud semantic model. Some indicative analysis this
component will perform is shown below:

 When battery level = 60% & job type to be onloaded = “intensive” Then battery status = critical

 When battery level = 60% & job type to be onloaded = “not intensive” Then battery status = normal

 IF Battery status = critical Then Infer that Edge device = ‘not adequate for this processing job’

 IF Battery status = normal Then Infer that Edge device = ‘adequate for this processing job’

The Mobile Context Analyzer will receive as inputs historical data coming from edge devices (types), edge
related attributes, types of processing jobs running. Moreover, it should receive real-time data such as
regularly pushed events from edge devices about QoS variations and pulled data from edge devices for
certain parameters, as battery, location, network capacity etc. It will generate as outputs a correlation
between edge related attributes, types of jobs running and “observed” QoS variations that will constitute
the inferred context about the current status of edge devices, e.g., an estimate of the task execution time
on edge device or an estimate of the remaining battery lifetime for edge device where it is applicable.

The Mobile Context Analyzer will go beyond the state of the art through a combination of stream
processing-based machine learning with semantic inferencing.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 28

Mobile Context Analyzer

Function  Collects monitoring data from edge devices and infers context

 Can relate current context to the processing capacity of a device, e.g.
expected execution time, battery level

Subcomponents
Event Database and Event Analyzing Service

Input
 Events

Output  Per-device context inferred from monitoring data

 Capability of edge device to process a given task

Sources Communication & Message Broker (monitoring data)

Consumers Situation Detection Mechanism, Autonomic Resource Manager

Beyond SOTA Combination of stream processing-based machine learning with semantic inferencing

Responsible
Partners

ICCS

Available assets  Prototype android application in-development

 Open source MQTT brokers

 Scalable stream data storage and distributed stream processing

5.1.3 Situation Detection Mechanism

The Situation Detection Mechanism detects interesting situations that might lead to resources adaptation
or data-intensive application reconfiguration or redeployment. The Situation Detection Mechanism
receives as inputs the context of edge device, monitoring data from cloud & edge resources, the current
workload (e.g. current throughput, volume) as well as workload predictions (e.g. predicted throughput,
volume). It generates as outputs the detected situation and its associated context conditions.

The Situation Detection Mechanism will go beyond the state of the art by delivering a situations detection
approach based on smart event subscriptions, workload predictions and inferred context in order to cope
with the dynamicity of Big Data.

Situation Detection Mechanism

Function  Detects any interesting situations (that might reveal adaptation opportunities)
during the usage of the Cloud Application under certain context conditions.

 Triggers adaptation of the processing topology

 Guides the deployment of application fragments

Subcomponents
Event listener, complex event processing engine

Input  Monitoring sensors from cloud and edge resources, inferred context from edge
resources, application workload predictions

Output  Interesting situations (that might reveal adaptation opportunities)

Sources Mobile Context Analyzer, Communication & Message Broker (monitoring data),
Workload Predictor

Consumers Application Fragmentation & Deployment Recommender, Resource Adaptation
Recommender

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 29

Beyond SOTA Delivery of a situations detection approach based on smart event subscriptions,
workload predictions and inferred context, coping with the dynamicity of Big Data

Responsible
Partners

ICCS

Available assets  Situation Action Network (SAN) Engine

 Open source stream computing and complex event processing engines (e.g.
Siddhi, Flink, Esper, Drools)

5.1.4 Application Fragmentation & Deployment Recommender

The Application Fragmentation & Deployment Recommender will recommend the appropriate
fragmentation of cloud applications into smaller parts that can be efficiently deployed over cloud / edge
resources. Moreover, it will associate applications and application fragments with placement constraints
and optimization preferences. Examples of information that this mechanism may dispatch to the rest
PrEstoCloud components are:

 Fragment 1 must run on a VM with RAM > 4 GB

 Fragment 2 may run on any edge device

 All fragments should be placed under the same availability zone.

The Application Fragmentation & Deployment Recommender will receive as input the available VM flavours
& edge devices as well as the qualitative, quantitative preferences of the DevOp, Application developer in
order to formulate the optimization function. It will generate as output a recommended fragmentation
along with a recommended deployment serialized in a TOSCA-based specification (without specific VM and
edge instances). The recommendation will take into consideration constraints such as security constraints
or other quantitative or qualitative constraints, e.g. cost, response time, data sanitization support etc. The
recommendation will be forwarded to the Resource Adaptation Recommender, which will then use them to
reactively or proactively (in case the situation detected involves workload predictions) invoke the
Application Placement & Scheduling Controller to find an optimal solution by resolving a constraint
programming problem. Based on this, it will complete the TOSCA specification and dispatch it to the
Autonomic Data Intensive Application Manager to deploy it.

The Application Fragmentation & Deployment Recommender will go beyond the state of the art by
extending existing approaches which focus primarily on either cloud resource management or off-loading
between cloud and edge resources. Moreover, it will combine constraint programming and AI or rule-based
approaches to seamlessly deploy application fragments on cloud or edge resources.

Application Fragmentation & Deployment Recommender

Function  Fragments a Cloud Application into smaller processing parts, in order to
facilitate deployment on cloud and edge resources

 Deploys the Cloud Application on cloud and edge resources

Subcomponents
Annotation Processing Service, Fragments Generator, Abstract Deployment Generator

Input  Interesting situations detected from the Situation Detection Mechanism, the
Application placement requirements and annotations

Output  Recommendation on the Deployment of application fragments

Sources Annotations, Placement Requirements, Situation Detection Mechanism, Cloud & Edge
Resources Repository

Consumers Resources Adaptation Recommender

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 30

Beyond SOTA Extension of the existing approaches which focus primarily on either cloud resource
management or off-loading between cloud and edge resources. There will be a
combination of constraint programming and AI or rule-based approaches. Additionally
application fragments will be seamlessly deployed on cloud or edge resources

Responsible
Partners

ICCS

Available assets  Java Parallel Processing Framework (JPPF)

 React Native

5.1.5 Resources Adaptation Recommender

The Resources Adaptation Recommender will provide context-aware, edge-cloud adaptation
recommendations that include changes to the used cloud resources, the used edge devices and the
applications or application fragments placement. It will receive as input the current processing topology
and placement, the detected situations along with the respective context of the used and the available
edge devices. It will generate as output the adaptation recommendation to reconfigure the processing
topology, e.g., to introduce new processing nodes, replicate nodes for failover purposes, remove redundant
or underused processing nodes. Moreover, it will recommend how to alter the processing topology on
cloud resources, e.g., to reconfigure additional VMs that host existing processing nodes, span VMs to new
physical machines to deal with failover, start new containers or deploy on additional hosts in a cluster.
Finally, it will shift processing effort to/from resources at the extreme edge of the network.

The Resources Adaptation Recommender will go beyond the state of the art by implementing context-
aware edge-cloud adaptation recommendation algorithms that estimate additional factors that may
influence adaptation recommendation decisions (task/VM migration time, cost etc.). Moreover, it will find
feasible adaptation recommendations seamlessly among edge devices and cloud resources based on
generic scalability requirements.

Resources Adaptation Recommender

Function  Recommends adaptations on the application deployment topology, in order to
meet the application requirements and deployment constraints.

Subcomponents
Resources Adaptation Engine

Input  The current situation from the Situation Detection Mechanism and the current
application deployment by the Application Fragmentation and Deployment
Recommender

Output  An extended TOSCA specification document, describing the new application
deployment topology

Sources Application placement requirements, Situation Detection Mechanism, Cloud & Edge
Resources Repository

Consumers Application Placement & Scheduling Controller

Beyond SOTA Context-aware edge-cloud adaptation recommendation, estimating additional factors
that may influence adaptation recommendation decisions (e.g task/VM migration time,
cost). Feasible adaptation recommendations among edge devices and cloud resources
will be found seamlessly, based only on generic scalability requirements

Responsible
Partners

ICCS

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 31

Available assets  Service Adaptation Recommender (SAR)

5.1.6 Meta-Management layer: an integrated view

In the Figure 9, we present a coarse-grained sequence diagram that depicts the most important
interactions, as explained above, between the main PrEstoCloud components that constitute the Meta-
Management Layer. We note that for completion and diagram readability reasons, we also consider
interactions that span the boundaries of the Meta-Management layer (i.e. Communication & Message
Broker, Control Layer) but we depict them without providing any details on their corresponding
components (as these will be provided below in this section).

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 32

Figure 9: PrEstoCloud Meta-Management Layer – Sequence Diagram

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 33

5.2 Control Layer
The Control layer mainly consists of managing PrEstoCloud resources and applications. Based on
recommendations from the Meta-Management Layer, the Control Layer is in charge of computing initial
and new resources placements, deploying and monitoring Cloud and Edge resources, and managing Data
Intensive applications.

This layer involves the following modules: Application Placement & Scheduling Controller, Mobile
On/Offloading Processing, Autonomic Data Intensive Application Manager, Autonomic Resource Manager,
Cloud & Edge Repository, and Security & Enforcement Mechanism.

5.2.1 Autonomic Data Intensive Application Manager

The Autonomic Data Intensive Application Manager (ActiveEon) is a workflow scheduler that rely on the
Autonomic Resource Manager to execute commissioning and deployment tasks on PrEstoCloud resources.

The Autonomic Data Intensive Application Manager will receive as input an extended TOSCA specification
file from the Application placement & Scheduling controller. Based on the TOSCA file received, the
Autonomic Data Intensive Application Manager extracts the specifications and the desired placement of the
resources to their respected cloud infrastructure. Then, the Autonomic Data Intensive Application Manager
queries the Inter-Site Network Virtualization component to retrieve all relevant network configurations of
the resources to deploy or reconfigure.

When actions on resources are required (e.g. new resources must be acquired, existing resources must be
released) then a commissioning workflow is generated. The workflow mainly consists to query the
Autonomic Resource Manager to deploy and acquire new resources from public or private clouds.

Note: To ‘acquire’ a resource, the Autonomic Resource Manager installs a ‘Java agent’ (ActiveEon
technology) on the resource itself (using clouds APIs) to be able to inject and execute tasks remotely, and
also to monitor the resource itself.

Finally, once all resources actions are performed, a deployment workflow is generated and executed. This
workflow consists to orchestrate application specific tasks on remote resources (task examples: “Add a
resource to a specific VPN”, “Create a new Storm topology”, “Add a ‘bolt’ to an existing Storm topology”,
etc.) by communicating with the resources’ agents previously installed.

The Autonomic Data Intensive Application Manager will go beyond the state of the art by controlling and
mutating remote Event Processing Network (EPN) topologies from heterogeneous deployment workflows
(e.g. configuring resources to be part of a new Storm topology, updating network configurations, etc.).
Furthermore, its own internal Monitoring system will go beyond the state of the art by extending the
existing set of metrics to edge devices (battery, network antenna, etc.).

Autonomic Data Intensive Application Manager

Function  Generate and schedule commissioning workflows to manage resources (deploy,
acquire and release resources)

 Generate and schedule deployment workflows to deploy and manage data
intensive applications

 Monitor resources by subscribing to monitoring events on Communication &
Message Broker

Subcomponents
Cloud Deployment and Management, Edge Deployment and Management

Input  Complete TOSCA specification and reconfiguration actions, Security
policies/requirements

Output  Heterogeneous workflows scheduling (commissioning, deployment, and

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 34

monitoring)

Sources Application Placement & Scheduling Controller, Autonomic Resource Manager

Consumers Autonomic Resource Manager, Cloud & Edge Resources Repository, Mobile
On/Offloading Processing

Beyond SOTA The Autonomic Data Intensive Application Manager will go beyond the state of the art
by controlling and mutating remote Event Processing Network (EPN) topologies from
heterogeneous deployment workflows (eg. configuring resources to be part of a new
Storm topology, updating network configurations, etc.). Furthermore, its own internal
Monitoring system will go beyond the state of the art by extending the existing set of
metrics to edge devices (battery, network antenna, etc.).

Responsible
Partners

ActiveEon

Available assets  Open Source workflows scheduler (Java)

Below we include our responses regarding to the following reviewers’ recommendation:

Comment: Page 31 “Open Source workflows scheduler (Java)”, which one? Was it described in
the SotA deliverable? The same kind of sentence is repeated several times along the document

The "Open Source workflows scheduler (Java)", mentioned in the table above, refers to the "ProActive
Workflows & Scheduling" platform edited by Activeeon. The "Open Source Multi-Cloud resource manager
(Java)", mentioned in the table in next section, refers to the "ProActive Cloud Automation" platform edited
by Activeeon. These two platforms were not covered by the SotA deliverable, but they were stated as the
target platforms for implementation of the mentioned functionalities in the description of work (see
Section 1.4.3.2 Beyond the state of the art, WP4 description, 2.2.3 Exploitation activities). These platforms
are released in open source under AGPL (Affero General Public License). The revised version of SotA
deliverable now describe the ProActive Workflows & Scheduling platform.

5.2.2 Autonomic Resource Manager

The Autonomic Resource Manager (ActiveEon) is in charge of deploying, acquiring and releasing cloud or
edge resources.

To manage cloud resources, the Autonomic Resource Manager directly interacts with the private or public
IaaS cloud APIs to deploy and release Virtual Machines (VMs). In order to ‘acquire’ a resource, a script is
executed on each VM (through corresponding IaaS APIs) to start a specific agent that will directly
communicate with the Autonomic Data Intensive Application Manager to receive tasks execution orders
and monitoring rules.

In the case of edge resources, the Autonomic Resource Manager acquires (resp. releases) a resource by
starting (resp. stopping) a specific Docker container into Edge devices. The container itself includes a similar
agent than the one installed on cloud resources and provides the exact same features.

The Autonomic Resource Manager receives as input requests from the Autonomic Data Intensive
Application Manager to respectively deploy, acquire and release resources. Requests are executed from a
commissioning workflow scheduled by the Autonomic Data Intensive Application Manager. In case of
complex cloud deployments (private networks, NAT rules, security groups, etc.), the resources deployments
are executed in order and VMs are deployed in parallel to minimize the whole deployment time.

The Autonomic Resource Manager provides as output all the information collected on the new deployed
resources to the Autonomic Data Intensive Application Manager. This includes cloud related information

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 35

(VM type, data disk type and size, ID, public IP address, etc.), as well as application information (e.g. Storm
topology configuration), and PrEstoCloud specific information (VPN configuration, private IP address, local
domain name, etc.). All this information is then further enriched by the Autonomic Data Intensive
Application Manager (if necessary) and transmitted to the Cloud & Edge Resource Repository which
updates its database accordingly.

Thanks to a tight cooperation with the Autonomic Data Intensive Application Manager, the Autonomic
Resource Manager will go beyond the state of the art by deploying, managing and interconnecting
resources (VMs and/or Containers) on private/public IaaS and edge devices seamlessly.

Autonomic Data Intensive Application Manager

Function  Deploying and releasing cloud and edge resources.

 Acquiring resources by installing ActiveEon agent and Monitoring probes.

Subcomponents
Monitoring probes installer

Input  (De)commissioning tasks.

Output  Information on deployed cloud and edge resources.

Sources Autonomic Data Intensive Application Manager

Consumers Autonomic Data Intensive Application Manager, Cloud and Edge resources

Beyond SOTA Thanks to a tight cooperation with the Autonomic Data Intensive Application Manager,
the Autonomic Resource Manager will go beyond the state of the art by deploying,
managing and interconnecting resources (VMs and/or Containers) on private/public
IaaS and edge devices seamlessly.

Responsible
Partners

ActiveEon

Available assets  Open Source Multi-Cloud resource manager (Java)

5.2.3 Application Placement & Scheduling Controller

This component ensures the initial placement of the application jobs and their reconfiguration from an
observation of runtime events. It will receive as inputs TOSCA documents from the resources adaptation
recommender and the application fragmentation & deployment recommender. Those documents will
define the application expectations in terms of resource allocation, and placement constraints (e.g.
hardware or site affinity, fault-tolerance). Aside, it will also use from the Cloud & Edge resource repository
the view of the current infrastructure and the current application status. The scheduler will then check if
the current deployment satisfies all the application constraints. If some of the constraints are violated, it
will then contact the Autonomic Data Intensive Application Manager to propose the actions to perform
over the infrastructure to ensure the constraint satisfaction. These actions will be issued using TOSCA
documents to express explicitly the mapping of the jobs on resources or the reconfiguration actions to
execute using a TOSCA extension to define.

In public or private cloud infrastructure, the placement constraints are limited to VM to node or VM to VM
(anti-) affinities expectations and resource allocation. In the context of PrEstoCloud, we will propose a new
set of constraints to reflect the particularities of edge computing such as heterogeneous runtimes (virtual
machines, containers) or platforms (edge layer, private or public clouds). We will also propose a function, to
be minimized, to reflect the hosting cost while satisfying all the placement constraints.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 36

Application Placement and Scheduling Controller

Function  Scheduler for placing jobs under constraints

 Initial constraints are set for the initial deployment

 Constraints are refined or added depending on the context inferred by the
meta-management layer

Subcomponents
Tosca to/from BtrPlace model compilers, BtrPlace implementation of PrEstoCloud
specific constraints, Constraint solver (provided)

Input  Description of jobs to be placed (e.g. CPU/RAM requirements)

 Set of constraints to be applied (e.g. colocation of tasks on hardware)

 One objective function (e.g. maximizing resource provider revenue)
 Description of available physical resources (edge/private cloud), and of available

public clouds.

Output  Action plan for initial deployment of the infrastructure

 Action plan for migration of current infrastructure to new optimal

Sources Resources Adaptation Recommender

Consumers Autonomic Data Intensive Application Manager

Beyond SOTA  Characterization and placement of tasks that are not VMs

  Extension of code-base to enable modeling of public clouds

 Monetary cost functions for joined edge, private clouds, and public cloud
 infrastructure.

Responsible
Partners

CNRS

Available assets
 BtrPlace

5.2.4 Security Enforcement Mechanism

Security Enforcement Mechanism is based on a module that is responsible for ensuring protection with
different granularity levels and to enforce protection in different operational layers, all the way from the
networking infrastructure up to the cloud application itself.

The security reinforcement at the network layer is based on the SDN technology in order formulate rules on
existing virtual firewalls and Intrusion Detection Systems(IDS). Furthermore, the Security Enforcement
Mechanism is responsible to improve the network security by instructing the deployment of VNFs (such as
firewalls and IDS virtual devices) through virtual machines that can be instantiated on demand, following
the NFV paradigm.

The security aspects of resources provisioning through PrEstoCloud can be further enhanced with context-
aware access control that can be enforced for the access or configuration of the network and edge
resources or the processing outcomes of the applications. For this reason, the PrEstoCloud Semantic Model
and the PaaSword Context Aware Security Model 0 (based on the XACML standard) will be used as the core
of the context-aware authorization mechanism that PrEstoCloud envisions. The actual configuration and
enforcement of these policies requires the creation of a lightweight intervention mechanism, probably by
adapting and extending PaaSword or by using Drools (https://www.drools.org/) as a reasoning engine
(regarding the contextual information).

All the functionalities of the Security Enforcement Mechanism will be available as programmable security
resources that can be used by PrEstoCloud platform users, and will utilize the available cloud resources.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 37

Figure 10: Security Enforcement Mechanism Interactions

The following table describes the Security Enforcement Mechanism.

Security Enforcement Mechanism

Function  Enforces protection in different operational layers

 Leverages SDN technology and follows the Network Function Virtualization
(NFV) model

 Provides access and usage control mechanism

Subcomponents
NFV Repository, Security Policies and Enforcement Manager (UI)

Input  Monitoring Logs and events

Output  Changes on the configuration of the network sent to Autonomic Data Intensive
Application Manager component

 Enablement of SDN rules

 Deployment of VMs with NFV functions (load balancer, firewall or IDS)
capabilities in the cloud

 Configuration mechanisms

Sources DevOps interactions (policies definition and configuration), Communication Broker
(monitoring data), Inter-Site Network Virtualization

Consumers Autonomic Data Intensive Application Manager (ADIAM), Inter-Site Network
Virtualization

Beyond SOTA Adaptation of context-Aware control mechanism from PaaSword, support for SDN and
NFV capabilities on a dynamic and multi-cloud environment

Responsible
Partners

Ubitech

Available assets
 PaaSword (policy model and policies enforcement mechanism)

 Open source VNFs like IPS/IDS (probably Snort2) and Firewall,

 Drools

2 https://www.snort.org/

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 38

Due to the nature of the component the layers and components of the architecture of PrEstoCloud
platform have to be defined before taking final decisions of the security enforcement in dynamic resources
provisioning.

5.2.5 Mobile On/Offload Processing

The mobile offload component is the cloud side of the cloud-edge interaction. It provides the interface for
registration and monitoring of heterogeneous edge devices (e.g. microcontroller based, Android based,
lightweight Linux based computers, etc.) by communicating with a management agent installed on every
device.

It maintains a database of the current state of all of registered edge devices, their connectivity, availability,
and a list of device capabilities and associated resources (e.g. collocated data sources that constrain the
offloading to a specific device instance). The database (Edge Resources Database) exposes a JMX interface
to the Autonomic Data Intensive Application Manager, providing an abstraction of edge resources that can
be targeted by the system.

The component receives deployment and reconfiguration instructions from the Autonomic Data Intensive
Application Manager, and translates them into platform dependent deployment instructions, which are
issued to the Edge Resource Agent via the Message Broker. Any required task binaries or containers that
are not cached on the edge are encapsulated in the management messages and sent to the edge device
along with deployment instructions.

Following table describes the Mobile On/Offload Processing component using the common list
characteristics of the components identified in the start of this section.

Mobile On/Offload Processing

Function  Abstracts the available heterogeneous edge resources for the use by Autonomic
Data Intensive Application manager

 Maintains a database of available edge resources

 Communicates with offloading agents on edge resources to start, stop and
migrate tasks to and from the edge

Subcomponents
Edge Resources Repository; Registration, Monitoring and Management component

Input  Deployment and reconfiguration instructions;

 Device registration and status updates from edge resources

Output  Device dependent deployment instructions to the edge device agent

 Edge Resources Database API interface

Sources Autonomic Data Intensive Application Manager, On/Offloading agents via Message
Broker

Consumers Autonomic Data Intensive Application Manager, On/Offloading agents via Message
Broker

Beyond SOTA Ability to deploy the same task to different platforms, depending on the current
situation

Responsible
Partners

JSI

Available assets
 Java Parallel Processing Framework (JPPF)

 Docker, Linux Containers (LXC)

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 39

5.2.6 Control layer: an integrated view

Figure 11 depicts the sequence of interactions between components in this layer.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 40

Figure 11: Control layer sequence diagram

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 41

5.3 Cloud-Edge Communication Layer

This layer represents the core communication mechanism, which realizes event-driven architecture in order
to enable loosely coupling between components, esp. between data sources and data consumers.

5.3.1 Communication and Message Broker

Broker is a central part of a distributed system. This broker realizes Publish/Subscribe message queuing
form. It has a sender and one or more receivers for a single message. In this form, the sender is called a
publisher, because the sender will send the message by publishing a message to the topic. The receiver(s)
subscribed to the topic will then receive the message, which will be present in the topic until all subscribers
receive the message or until the message expires. For each type of message in the Publish/Subscribe form
of MOM, a “publisher” is chosen which sends out messages, and one or more “subscribers” are chosen
which “subscribe” to the messages. Once a subscriber has been registered with the middleware
component, any new messages sent by the publisher are automatically delivered to that subscriber in
addition to sending the same messages to any listeners, which are already registered, usually through an
event or callback mechanism [SAN14].

Communication and Message Broker

Function  Routes messages to the specific consumer/recipient

 Supports asynchronous communication

 Decouples data providers and data consumers

 Supports scaling of a distributed system

Subcomponents
Broker, Protocol, Topics

Input Monitoring sensors from cloud and edge resources

Application data (profile)

Output  Monitoring sensors from cloud and edge resources

 Application data (profile)

Sources Cloud and edge resources (monitoring)

Cloud and edge application

Consumers Workload Predictor

Situation Detection Mechanism

Mobile Context Analyzer

Beyond SOTA Public access to the broker in order to a very broad type of edge applications

Responsible
Partners

Nissatech

Available assets  Open source solutions (e.g. RabbitMQ)

5.4 Cloud-infrastructure and Device layers

These layers are dealing with the resources (infrastructure and the devices) in order to enable a
harmonized access and management of monitoring activities.

5.4.1 Spatio-Temporal Processing Library

The Spatio-Temporal Processing Library can be used in the edge resources in order to create an ad-hoc
overlay network that can be used in order to allow the nodes to communicate directly and exchange data.
For the creation of this ad-hoc overlay network several state of the art technologies have to be employed.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 42

More specifically, SDN principles will be adopted along with innovative protocols such as LISP3 and/or DHT4
in order to guarantee ad-hoc path identification, routability and information exchange.

Locator/ID Separation Protocol (LISP) is routing architecture that provides new semantics for IP addressing.
The current IP routing and addressing architecture uses a single numbering space, the IP address, to
express two pieces of information a) device identity and b) the way the device attaches to the network. The
LISP routing architecture design separates the device identity, or endpoint identifier (EID), from its location,
or routing locator (RLOC), into two different numbering spaces. Splitting EID and RLOC functions yields
several advantages such as scalability and routing simplicity.

On the other hand, a distributed hash table (DHT) is a class of a decentralized distributed system that
provides a lookup service similar to a hash table. To this extend, (key, value) pairs are stored in a DHT, and
any participating node can efficiently retrieve the value associated with a given key.

This distributed system will allow to correlate devices locations and have better usage of the resources at
the edge of the network. Thus, processing can be optimized by taking both space and time information of
the resources and allowing the deployed services to efficiently manipulate data in poor network coverage
situations.

As already mentioned, Overlay networking and DHTs are fundamental technologies for the realization of
the Spatio-Temporal processing library. The ability to register the computational profile of a resource and
use it without the restriction of network reachability is extremely valuable in the frame of the project. An
overlay network is established based on resources provided by (all) the nodes in the ad-hoc network.
Application specific information (required for the purposes of the processing) is stored in the overlay
network using Distributed Hash Tables (DHT) techniques.

Ubitech already maintains a reference implementation of the LIST protocol for overlay management and a
reference implementation of a DHT named Ubi:chord. Ubi:chord is a java library that can be used in order
to maintain a consistent hash map (i.e. key value store) among network nodes that are connected using a
mesh network topology (i.e. non centralized). Such a key/value store can be used as a medium of
communication for high level applications that do not want to rely to static synchronous established
channels in a mobile network. In that sense the library creates an overlay that can be used during the
exchange of information that occurs during processing.

Figure 12: Spatio-Temporal Processing Library Interactions

3 https://tools.ietf.org/html/rfc6830

4 https://en.wikipedia.org/wiki/Distributed_hash_table

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 43

Spatio-Temporal Processing Library

Function A library that can be used as agent or be integrated to applications in order to create an
ad-hoc overlay network that allow direct communication and data exchange on the
edge nodes.

Subcomponents
N/A

Input N/A

Output N/A

Sources Applications with Spatio-Temporal Processing Library

Consumers Applications with Spatio-Temporal Processing Library

Beyond SOTA The goal to create ad-hoc network on the edge that is self-configurable using mobile
resources can provide solution in many scenarios with poor network coverage
situations. Mobile Ad-hoc Networks (MANET)5 is an area with high research interest
and PrEstoCloud has the goal to make usage of such functionalities in real life scenarios
(by extending ubi:chord) and specifically on edge resources.

Responsible
Partners

Ubitech

Available assets
 ubi:chord6

5.4.2 Inter-Site Network Virtualization

The Inter-Site Network Virtualization component is responsible for creating an overlay network between
the sites selected to run computation tasks, and the site where the PrEstoCloud platform is deployed, if it
resides at a different location. The goal of this component is to enable full duplex communication between
components (either platform components, or customer applications, etc.), through the public Internet, but
within the safe compounds of a dedicated tunnel. Consequently, the applications are able to talk to each
other, as if they were located on the same site. This enables multi-cloud deployment of standard
application, e.g., Storm.

A common referrer for this kind of overlay network is a Virtual Private Network (VPN). By relying
standardized VPN technologies, such as IPsec and OpenVPN, the Inter-Site Network Virtualization
component is able to overcome the limitations of interoperability due to the implementation of proprietary
protocols. For example, public cloud providers, such as Amazon AWS and Microsoft Azure), offer dedicated
VPN solutions, so that their customers can easily use the public cloud as an extension of their own private
infrastructure. But, these offerings are proprietary and not compatible among themselves (a possible
vendor lock-in). Another advantage of relying on standardized technologies is the ability for the
PrEstoCloud platform to orchestrate the deployment of the overlay, so as to optimize its topology (thereby
avoiding network bottlenecks), and the ability to adapt the overlay network to the infrastructure
requirements, as formulated by the Meta-Management Layer (e.g. addition or removal of a site).

The features and specifications of the Inter-Site Network Virtualization component are summarized in the
following table. It is internally structured in 5 components that we now briefly describe.

5 https://datatracker.ietf.org/wg/manet/about/

6 https://www.ubitech.eu/technology/autonomicity/

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 44

The IP Numbering module is responsible for attributing unique IP addresses within the overlay network. For
virtual machines, this corresponds to the private IP address that will be assigned to the VM at boot-up,
alongside the network-level configuration (i.e. gateway, resolver, etc.). For edge devices, this corresponds
to the IP address to be used by the device with its tunnel interface.

The Gateway Initialization module is responsible for the initial setup of a location inside the overlay. It
reserves an IP space to be used for machines in that location; generates the required cryptographic keys so
as to provide mutual site authentication, and tunnel encryption; and it provides a template virtual machine
to be used as the site’s gateway to the outside world.

The Gateway Routing module provides the ability to disseminate the routing information among the site’s
gateways so that they know how to establish tunnels to new sites, and send data through these tunnels.

The Tunnelling Module is responsible for establishing the tunnels between the different sites. It can be run
from within a site’s gateway (in the case of a cloud), or on its own (in the case of an edge device).

The Measurement Module is responsible for collecting network-level information about a site, and
returning them to the PrEstoCloud platform. A number of metrics can be collected passively, e.g. current
transfer rate, total transfer, etc. Another set of metrics need to be actively measured, i.e. by injecting
measurement traffic into the network, e.g. estimation of the available bandwidth. Of course, in pay-as-you-
go services, such as public IaaSes, carrying out these experiments means paying for more data transfer. For
this reason, the Measurement module can be remotely called by the PrEstoCloud platform only when the
need for a specific and precise measure arises.

Inter-Site Network Virtualization

Function  Creates an overlay network between the sites where tasks are deployed

 Optimized routing between sites

 Site-to-site security

Subcomponents
IP Numbering Module

Gateway Initialization Module

Gateway Routing Module

Tunnelling Module

Measurement Module

Input 1. Site/location where tasks are going to be deployed
2. RPCs for proceeding to network measurements

Output 1. IP address and network configuration to be applied to VMs
2. Network-level information about site

Sources Autonomic Data Intensive Application Manager

Communication and Message Broker

Consumers Autonomic Data Intensive Application Manager

Resources Adaptation Recommender

Communication and Message Broker

Beyond SOTA  Provider-independent technology

 Dynamic, scalable, and on-demand deployment

Responsible
Partners

CNRS

Available assets
 OpenVPN,

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 45

 StrongSwan

5.4.3 On/Offloading Agents

Mobile offloading agents are the edge component of the cloud-edge interface. They are installed on every
edge resource, and respond to the Mobile On/Offloading Processing component’s requests for task
offloading, and periodically send the resource status updates to the Edge Resources Database.

Both a lightweight Linux agent (for deployment on Raspberry Pi and similar devices) and an Android agent
(for deployment on Android based user interface devices in trucks) will be developed, with the architecture
sufficiently generic to allow for other kinds of devices (e.g. microcontrollers) to be supported by the same
architecture. Depending on the evolution of use-cases, either task-based or container based approach will
ultimately be used on pure Linux platforms, and a JPPF task-based approach on Android platforms.

The agent is responsible for downloading of task binaries or containers from the Mobile On/Offload
Processing component, executing them with appropriate permissions, and cleaning up after the execution.

Mobile On/Offload Agent

Function  Registers the edge device with the On/Offloading Processing component’s Edge
Resource Database

 Responds to management requests for task migration, starting and stopping

Subcomponents
-

Input  Edge device sensors,

 Task install/start/stop instructions from the Mobile On/Offload Management
component

Output  Device and task status

Sources Mobile On/Offload Processing component via Communication Broker

Consumers Mobile On/Offload Processing component via Communication Broker

Beyond SOTA Extension of current technology, possible extension to microcontroller based systems if
needed

Responsible
Partners

JSI

Available assets
 Java Parallel Processing Framework (JPPF),

 Docker, Linux Containers (LXC)

5.4.3 Monitoring Probes

Monitoring Probes are present on every resource managed by the architecture, as well cloud than edge
resources. These monitoring probes are responsible of communicating information about the resources. In
the case of cloud or edge devices with virtualization capability, they are installed by the Autonomic
Resource Manager when deploying virtual machines. In case of edge resources such as mobile phones, they
are part of the corresponding mobile application, and if the operating system supports it (eg. Odroid ARM
board) they are containerized using Docker. They publish into the broker both computing health
information - such as CPU load, memory usage, network latency, battery load, etc. - , status of the

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 46

application agent - idle, busy, paused, error - and flexible big data application metrics - such as progress,
finish, etc. These informations are sent in form of event messages to be consumed by both control and
meta-management layers.

Monitoring Probes

Function · Informs about the status of the managed resources and applications

Subcomponents
none

Input  Inner resource information (resource health, agent status, application
metrics)

Output  Events about changes in resources status

Sources none

Consumers Communication Message Broker

Beyond SOTA A complete monitoring probes to measure whole information, both low level
(hardware) and high level (applicative)

Responsible
Partners

ActiveEON

Available assets · Existing monitoring component of the proactive platform

5.4.5 Cloud-Edge Communication Layer: an integrated view

Figure 13 presented below depicts a sample sequence of interactions between the Communication Broker
and other components of the platform.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 47

Figure 13: Cloud-Edge Communication Layer Sample interaction

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 48

6. Interfaces Documentation
This section describes the main interfaces within the PrEstoCloud architecture, as these identified with the
definition and the integration needs of the components specified in section 5. This section also gathers
information about the interfaces that will help all technical partners on the implementation of the
integrated solution of PrEstoCloud by defining the communication between the components that will be
created in the scope of Work packages 3-4-5.

6.1 Interfaces of the Meta-management Layer Components

In this section, we focus on the main interfaces provided and requested by the individual components that
formulate the PrEstoCloud Meta-management Layer. Specifically, Figure 14 presents the main components
involved and depicts either internal or external interfaces (to Communication & Message Broker and
Control Layer). We note that placement requirements and application annotations will be injected to the
Meta-management Layer through an appropriate user interface that will be detailed as part of the WP5
work.

Figure 14 : Meta-management Layer Component Diagram

The following tables refer to the analysis of Figure 14, since they carry information about the
communication envisioned between the PrEstoCloud components, the connection type and message
format that may be used along with the expected constraints that may characterize this communication.
Specifically, Table 1 refers to the main interfaces of the Mobile Context Analyzer, Table 2 describes the
interfaces of the Situation Detection mechanism, Table 3 the interfaces of the Application Fragmentation &

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 49

Deployment Recommender (DIAFDRecom) and Table 4 the interfaces of the Application Fragmentation &
Resources Adaptation Recommender (RARecom).

Table 1: Interfaces/Connection Types – Mobile Context Analyzer

Component1 Component2 Connection type Message format Constraints

(throughput/size)

Description

Mobile Context
Analyzer

Communicatio
n & Message
Broker

Pub/sub (e.g.
MQTT)

e.g.1 JSON
Topic resource.metric
Payload
 timestamp
 metric value
e.g.2 JSON
Topic request.context
Payload
 timestamp
 aspect_1
 aspect_2
 aspect_n

- Per s/min/h

- or upon request

- KBs/event

Receive regularly pushed
events & events on request
from edge devices for certain
parameters

e.g. battery, location,
network capacity etc.

Mobile Context
Analyzer

Situation
Detection
Mechanism

Replies (e.g.
Restful)

e.g. JSON
Post edgedevice.id
Payload
 Edge.contextProperty1
 Edge.contextProperty2

- Upon request

- KBs/request

Provide context of edge
devices

Mobile Context
Analyzer

Autonomic
Resource
Manager

Replies (e.g.
Restful)

e.g. JSON
Topic edgedevice.id
Payload
 Edge.contextProperty1
 Edge.contextProperty2

- Upon request

- KBs/request

Relay contextual information
for appropriate edge devices
to handle a certain
processing job

Mobile Context
Analyzer

DIAFDRecom Replies (e.g.
Restful)

e.g. JSON
Topic edgedevice.id
Payload
 Job.complexity1
 Job.complexity2

- Upon request

- KBs/request

Relay information on
appropriate edge devices for
undertaking a certain
processing job

Table 2: Interfaces/Connection Types - Situation Detection Mechanism

Component1 Component2 Connection
type

Message format Constraints

(throughput/
size)

Description

Situation
Detection
Mechanism

Communication &
Message Broker

Pub/sub (e.g.
MQTT)

e.g. JSON
Topic resource.metric
Payload
 timestamp
 metric value

- Per ms or s

- KBs/event

Receive monitoring events from
cloud & edge resources

Situation
Detection
Mechanism

Mobile Context Analyzer Requests
(e.g. Restful)

e.g.1 JSON
Get edgedevice.context.All

Upon request

- KBs/request

Retrieve context of edge devices

Situation
Detection
Mechanism

Workload predictor Subscribes/R
equests (e.g.
MQTT,
Restful)

e.g. JSON
Topic Stream.id/name
Payload
 timestamp
 predicted volume.value
 predicted
volume.confidence
 predicted
velocity.value
 predicted
velocity.confidence

- Every time
there is a new
prediction
event

- KBs/event

Receive workload predictions
(e.g. predicted throughput,
volume)

Situation
Detection
Mechanism

Resources Adaptation
Recommender/Communi
cation & Message
Broker/ Application
Fragmentation &
Deployment

Publishes
(e.g. MQTT)

e.g. JSON
Topic situation.id/name
Payload
 timestamp
situation.parameter1
situation.parameter2

- Per ms or s

- KBs/event

Provide detected situations
under a certain context
conditions

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 50

Recommender/Autonom
ic Resource Manager

Table 3: Interfaces/Connection Types - Application Fragmentation & Deployment Recommender

Component1 Component2 Connection
type

Message format Constraints

(throughput/size)

Description

DIAFDRecom Cloud and
Edge Resources
Repository

Request (e.g.
Restful)

e.g. JSON
Get VM_flavours
Get Edge_types

- Upon request

-Once per
application initial
placement

Request and receive available VM
flavours and edge devices types for
solutions filtering

DIAFDRecom UI
requirements/
Annotations

Request (e.g.
Restful)

e.g. JSON
Get Annotations
Get App.preferences

-Upon request

-Once per
application initial
placement

- KBs/request

Receive qualitative/quantitative
preferences from DevOps and
application developers along with
annotations that can define fragments
and their requirements

DIAFDRecom Mobile Context
Analyzer

Requests (e.g.
Restful)

e.g. JSON
Get
edge.jobcomplexity.All

- Upon request

- KBs/request

Receive information on appropriate
edge devices per certain processing
job complexity (e.g. CPU
intensiveness)

DIAFDRecom Situation
Detection
Mechanism

Requests (e.g.
MQTT)

e.g. JSON
Topic
situations.id/name

- Per ms or s

- KBs/event

Receive detected situations under a
certain context conditions

DIAFDRecom RARecom/Co
ntrol layer
components

Provide (e.g.
Restful)

e.g. JSON
Post
application_fragment.
id
Payload
 timestamp
quantitive_constraints
qualitative_contraints

- Upon request

- KBs/event

Provides meaningful fragments per
application along with their
requirements (e.g. certain fragment
cannot be deployed on edge devices)

Table 4: Interfaces/Connection Types - Application Fragmentation & Resources Adaptation
Recommender

 Component1 Component2 Connection
type

Message format Constraints

(throughput
/size)

Description

RARecom UI requirements

Request (e.g.
Restful)

e.g. JSON
Get App.preferences

Upon request

- KBs/request

Receive qualitative/quantitative
preferences from DevOps and
application developers

RARecom Cloud & Edge
Resources
Repository

Request (e.g.
Restful)

e.g. JSON
Get Topology
Get ApplicationPlacement

Upon
request/
situation that
triggers
adaptation

- KBs/request

Request current processing
topology and placement

RARecom Application
Placement and
Scheduling
Controller

Provides (e.g.
Restful)

Extended TOSCA
specification document
Post
 new_deployment_file

Immediately
following a
situation that
triggers
adaptation

- KBs/event

Send reconfigured topology and
application placement

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 51

RARecom Situation
Detection
Mechanism

Pub/Sub (e.g.
MQTT)

e.g. JSON
Topic Situation.id/name
Payload
 timestamp
 situation.parameter1
 situation.parameter2

- Per ms or s

- KBs/event

Receive detected situation &
context of the used and/or
available edge devices

RARecom DIAFDRecom Request (e.g.
Restful)

e.g. JSON
Get application_fragment.All

Upon request

- KBs/request

Requests fragments per
application along with their
requirements (e.g. certain
fragment cannot be deployed on
edge devices)

6.2 Interfaces of the Control Layer Components

In this section, we focus on the main interfaces provided and requested by the components that formulate
the PrEstoCloud Control Layer. Specifically, Figure 15 shows the main components involved in the Control
Layer and depicts internal and external interfaces and the interaction between components in the Control
layer.

Figure 15: Control layer - interaction between components

Figure 16 depicts the UML component diagram.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 52

Figure 16: Control layer – component diagram

Similarly to the Meta-Management Layer, the following tables refer to the analysis of the communications
illustrated in Figure 15 and Figure 16. Specifically, Table 5 refers to the main interfaces of the Autonomic
Data Intensive Application Manager and Table 6 describes the interfaces of the Autonomic Resource
Manager. Table 7 correspond to Application Placement & Scheduling Controller. Table 8 describes the
interfaces used by the Security Enforcement Mechanism.

Table 5: Interfaces/Connection Types – Autonomic Data Intensive Application Manager

Component1 Component
2

Connection type Message format Constraints

(throughput/size)

Description

Autonomic Data
Intensive
Application
Manager

Autonomic
Resource
Manager

REST API (JSON).

Provides
commissioning and
deployments
workflows through
REST API.

JSON.
Eg. { tag", "image",
"number",
"hardware":{"type",
“cpu”, “mem”},
"credentials":{
"username",
"password” }}

One request for each
resource type to
deploy (a single
request can deploy
multiple resources of
the same type (eg.
cloud, region, and
flavour)).

Executing
commissioning script
to deploy, acquire,
and release
resources.

Autonomic Data
Intensive
Application
Manager

Inter-site
Network
Virtualizatio
n

REST API (JSON).

Retrieves networking
information about
resources involved in
an initial deployment
or a reconfiguration.
scenario

- JSON/YAML for
resource
information

- RAW data for
network
configuration files

One request per
resource to configure,
and one request for
the configurations of
the whole application
network.

Retrieving the
desired network
configuration for the
new/redesigned
application to
configure.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 53

Autonomic Data
Intensive
Application
Manager

Cloud &
Edge
Resources
Repository

Send resources
description files
(JSON/XML).

Publish up to date
information about
one or more
resources.

JSON: a complete
description of the
new resource.
(unique identifier. IP
address, CPU,
memory, disk,
location, etc.)

Every time a new
resource is deployed
or released .

Updating the shared
cloud/edge
resources catalog to
reflect last
deployed/released
resources.

Autonomic Data
Intensive
Application
Manager

Monitoring REST API (JSON).

Provides complete
monitoring rules to
probe resources and
react on events

JSON.

Eg: Each request
/rule to submit must
contains:

- the metric to
probe and the
probing interval

- the condition(s) to
be fulfilled in order
to trigger an action.

- the action to
trigger (Java based
code. Eg. trigger a
workflow with
specific
parameters)..

One request per rule
to add on the CEP
engine.

Defining and
enacting specific
monitoring rules
when acquiring new
resources
(Cloud/Edge).

Autonomic Data
Intensive
Application
Manager

Cloud/Edge
resources

Periodical probes to
Java Management
Extensions (JMX)
endpoints (hosted on
resources) through:

- ActiveEon’s own
communication
protocol.

- Java Remote
Method Invocation
(RMI)

e.g. JSON

Get VM_flavours

Periodical requests
per resource to
monitor. The
frequency depends on
the configured
monitoring rule.

Monitoring a
resource (cloud or
edge) by querying a
remote JMX
endpoint.

The endpoint is
automatically
provided by the
Autonomic Resource
Manager when
acquiring a new
resource. The
remote endpoint is
made accessible to
the Monitoring
component through
ProActive’s own
communication
protocol.

Autonomic Data
Intensive
Application
Manager

Mobile
On/Offloadi
ng
processing

REST API.

Sends mobile on/off
loading actions

eg. JSON description
of the mobile
resource (edge), and
the action to
perform.

Every time a new
mobile resource
(edge)is acquired or
released .

Enacting mobile
device on/offloading
actions to start/stop
processing data on
the edge.

Table 6: Interfaces/Connection Types - Autonomic Resource Manager

Component1 Component2 Connection type Message format Constraints

(throughput/size)

Description

Autonomic
Resource
Manager

Cloud/Edge
resources

Public/private IaaS
cloud APIs.

SSH to edge
devices.

e.g. JSON

CreateInstance()

DestroyInstance()

AssignPublicIP()

AssignSecGroup()

Every time there is a
new resource to
deploy or an existing
resource to release.

Docker containers
must be used to
deploy ActiveEon
agents on edge

Deploy and acquire
Cloud/Edge resources.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 54

... devices.

Table 7: Interfaces/Connection Types - Application Placement & Scheduling Controller

Component1 Component2 Connection type Message format Constraints
(throughput
/size)

Description

Cloud and Edge
Resources
Repository

Application
Placement &
Scheduling
Controller

Provides up-to-
date list of
available
resources

JSON None within
scope of project

BtrPlace needs to have
a description of
available resources on
physical machines
(e.g. uCPU/uRAM) to
be able to place jobs
on them.

Resource
Adaptation
Recommender

Application
Placement &
Scheduling
Controller

Provide
application
requirements

TOSCA file Asap. For the
initial
deployement
requests. Every
15 minutes for
reconfiguration
requests.

Completes the
TOSCA++ file provided
by the Resource
Adaptation
Recommender, pins all
jobs to a specific
device.

Application
Placement &
Scheduling
Controller

Autonomic
Data Intensive
Application
Manager

Provides the
jobs to resource
mapping and the
reconfiguration
actions.

TOSCA file None within
scope of project

Table 8: Interfaces/Connection Types – Security Enforcement Mechanism

Component1 Component
2

Connection type Message format Constraints

(throughput/size)

Description

Security
Enforcement
Mechanism

Communicat
ion Broker

Any Pub/sub topic
(e.g. MQTT)

e.g. JSON

Topic
resource.metric

Payload

 timestamp
 metric value

- Per ms or s

- Kbs/event

Monitoring data
from cloud & edge
resources

Security
Enforcement
Mechanism

Autonomic
Data
Intensive
Application
Manager

Requests (e.g.
Restful)

e.g. JSON

Payload

 timestamp
deploy.vnf.param1
config.vnf.param1

- Limited frequency;
during deployment or
management of a
security related cloud
resource

- Kbs/ request

Deploys and
configures VNF
resources

Security
Enforcement
Mechanism

Inter-site
Network
Virtualisatio
n
Orchestrato
r

Requests (e.g.
Restful)

e.g. JSON

Payload

 timestamp
config.sdn.param1
config.sdn.param2

- Limited frequency;
during the
configuration of a
security related cloud
resource

- Kbs/ request

Configures
capabilities over the
existing SDN
network

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 55

Table 9 lists the interfaces that are exposed by the Mobile On/Offload Processing component. On one
hand, the component talks to the Autonomic Data Intensive Application Manager and provides it with the
information on which edge devices are currently available for task offloading, abstracted in such a way that
the rest of the system does not need to treat them in a special way. In the other direction, it receives
instructions for task on/offloading and translates them to a platform dependent instruction set.

Table 9: Interfaces/Connection types – Mobile On/Offload Processing

Component1 Component2 Connection type Message format Constraints
(throughput /size)

Description

Autonomic Data
Intensive
Application
Manager

Mobile
On/Offloading
processing

REST API

Receives mobile
on/off loading
actions

JSON description of the edge
resource, and the action to
perform.

Every time a new
mobile resource
(edge)is acquired or
released

Receiving actions to be
performed on the edge
devices
(starting/stopping of
on/offloading)

Mobile
On/Offloading
processing

Autonomic Data
Intensive
Application
Manager

Java JMX API API Periodical
requests/responses,
depends on the
configuration

Provides the current
information about edge
resource availability and
state to the management
layer

Mobile
On/Offloading
processing

Mobile
On/Offloading
Agent

Message broker JSON description of the actions
required, with embedded task
binaries

Every time a
resource is acquired
or released

Implements the
communication between
mobile offload
management and agent

6.3 Interfaces to the Cloud-Edge Communication Layer

Inter-Site Network Virtualization

This Section presents the interfaces of the Inter-Site Network Virtualization component available to the
other components. They can be divided into two groups: (i) request/response function calls with the
Autonomic Data Intensive Application Manager, which shall occur on initial deployment of the
infrastructure, or upon refactoring; and (ii) asynchronous communication of meta-data between the
PrEstoCloud platform and the Inter-Site Network Virtualization gateways. Table 10 provides a summary of
these interfaces. We describe them in more details below.

Table 10: Interfaces/Connection Types – Inter-Site Network Virtualization

Component1 Component2 Connection
type

Message format Constraints
(throughput /size)

Description

Inter-Site Network
Virtualization

Autonomic Data
Intensive
Application
Manager

Response (to e.g.
RESTful request)

e.g. JSON
 parameter:
 - site identifier

N/A Provides the IP address
and network
configuration to apply
to a VM before its
instantiation.

Inter-Site Network
Virtualization

Autonomic Data
Intensive
Application
Manager

Response (to e.g.
RESTful request)

e.g. JSON containing
ANSIBLE commands

N/A Provides a template VM
to be instantiated as
the network gateway
for the site

Inter-Site Network
Virtualization

Communication &
Message Broker

Pub/Sub (e.g.
MQTT)

e.g. JSON
 topic network.id

Max. a couple of
times per minutes,
per site.

Publishes a set of
passive measurements
related to the network-
level information of the
site (e.g. current
transfer rates, traffic
matrices, etc).

Communication &
Message Broker

Inter-Site Network
Virtualization

Pub/Sub
(asynchronous
RPC call through
the broker)

e.g. JSON
 topic network.active.id
 parameters
 identifiers for site and
experiment

Bandwidth-hungry
and time consuming.
Recommended for
use when precise
information needed.

Asks to a specific site to
carry out a specific
active measurement
experiment on the
network.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 56

Inter-Site
Network
Virtualization

Communication
& Message
Broker

Pub/Sub
(asynchronous
result of a RPC
call through the
broker)

e.g. JSON
 topic network.active.id

Bandwidth-hungry
and time
consuming.
Recommended for
use when precise
information
needed.

This completes the
asynchronous
transaction with the
RPC call given
through the Broker.

The interfaces related to deployment and redeployment are request and responses made to the Inter-Site
Network Virtualization by the Autonomic Data Intensive Application Manager. Their goal is two-fold. First,
to provide a standard template for a gateway VM to be deployed in each site. This VM will be the entry and
exit point of all traffic leaving the local zone. All of these gateways will be configured to connect to each
other, in order to establish secure tunnels that allow the end applications to exchange data among each
other. Second, to provide the individual site-specific network configuration to be applied to VMs running
end-applications, in order to provide them with the right routes, resolvers, and also to avoid any possible
duplicate IP address within the overlay.

The interfaces related to the asynchronous communication of meta-data aim at providing a network-level
view of each site to the Meta-Management Layer, and to the PrEstoCloud platform users (e.g. DevOps). The
collected data will be of two types: passive measurements, and active measurements. Passive
measurements are gathered through the monitoring of network activity through the gateways. Metrics,
such as the current traffic activity, cumulative traffic, average transfer rates, etc. will be periodically
published on an ad-hoc topic at the Broker. On the other hand, some metrics, e.g. the tunnel capacity, in
other words, the available bandwidth for applications to exchange data within the tunnel, can only be
reliably measured by injecting measurement traffic. In situations where data transfers are costly, it is
undesirable to proceed to these measurements periodically. For this reason, measurements can be
asynchronously requested from the Inter-Site Network Virtualization component. Upon the receipt of a
measurement request, the specified site will proceed to the specified measurement on the specified link.
Upon completion of the experiment (which, depending on the situation, can take several minutes), the
measured value will be published on a dedicated feed of the Broker.

On/Offloading Agents

Table 11 describes the interface between the Mobile On/Offload Processing Management component

and the Agent running on every device. The abstract interface is common to all the device types, but

the specific instructions and payloads sent to the device depend on the target platform.

Table 11: Interfaces/Connection types – Mobile On/Offloading Agents

Component1 Component2 Connection type Message format Constraints
(throughput /size)

Description

Mobile
On/Offload
Processing

Mobile
On/Offloading
Agent

Message broker
Pub/Sub

JSON description of the edge
resource state

Periodic and every
time a device
registers to the
system, and when
connectivity is
regained

Notifies the Edge
Resources database
through the Autonomic
Data Intensive
Application Manager
about the availability and
state of edge devices

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 57

7. Conceptual Architecture Validation
This section validates the proposed conceptual architecture against the requirements defined, collected
and categorized in D2.2. To achieve this validation, each component implementer identified the relevant
requirements that have to be addressed and also each requirement was mapped to the platform’s
components in order to ensure that the functionality described can be realized by the platform. Multiple
iterations of architecture have been shaped and this process helped on concluding on the final version of
the conceptual architecture.

The functional and non-functional requirements have been defined accordingly, after an iterative
formalization process that included also the identification of “responsibilities” for each layer included in the
initial concept envisioned during the inception of PrEstoCloud. Therefore, both the requirements and
elicited in D2.2 and the initial concept depicted in Figure 1 have been used to support the architecture
design process, as it is described in the following subsections.

7.1 Functional Requirements Mapping to Components

Functional requirements describe the list of functionalities required from the system by the stakeholders,
thus describing what the system should be able to do. Conceptual architecture and the defined
components describe how to implement this functionality, and therefore by creating a mapping between
the functional requirements and the components will reveal the functional completeness of the designed
platform and will lead to an implemented platform with high degree of functional suitability7.

The requirements defined in D2.2 include requirements regarding the general capabilities of the platform
but also more specific requirements regarding configuration, monitoring, runtime and regulatory
characteristics. All functional requirements have been categorized using the notion of the priority of the
requirements in order to make the development as feasible as possible. The MoSCoW8 prioritization
technique has been used, that suggests the following priorities:

 Must have

 Should have

 Could have

 Won't have (this time)

During this process only the “Must have” and “Should have”, have been used for the definition and
validation of the platform. In more details, “Must have” were used to give the main direction of the
architecture, while both of “Must have” and “Should have” have been used for the task of validating the
conceptual architecture.

For the ease of referencing, the following table collects the important requirements defined in D2.2, listed
by priority and also provides an aggregated view regarding if these requirements are mapped to
components. It has to be stated that some of the “Should have” functionalities were not possible to be
mapped to components at the current conceptual architecture, as it was unclear which and if the
components could provide the required capabilities. This will be again checked in the actual architecture of
platform the platform (that will be documented in D6.1). However as these are not “Must have”
requirement the effect on the platform completeness would be minimal.

7 http://iso25000.com/index.php/en/iso-25000-standards/iso-25010/58-functional-suitability

8 https://en.wikipedia.org/wiki/MoSCoW_method

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 58

Table 12: Summary of most important functional requirement priorities and their coverage on the
conceptual architecture

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 59

The following Figure 17 visually depicts all the “Must have” and “Should have” requirements on the
architecture schema in order create in an easier to understand visualization of the role of each component
and layer. Also, the coloring of the requirements represents the different categories of the requirements.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 60

With gray color boxes the general requirements are depicted, green the configuration requirements,
orange the monitoring requirements, yellow the regulatory requirements and with blue the runtime
requirements.

Figure 17: Illustration of requirements mapping

What is made clear from this figure is the importance of some specific components for the successful
creation of the platform. More specifically, the Autonomic Data Intensive Application Manager, the
Application Fragmentation & Deployment Recommender, the Autonomic Resource Manager and the
Application Placement & Scheduling Controller are composing the most important part of the platform to
be developed.

In the following subsections the mapping of requirement to components and layers is presented based on
the defined priorities, in order to validate the design and also to ease the development of the components
and the integrated platform of PrEstoCloud, as each developed component has to assure the compliancy
with the constraints or the functionality that each requirement suggests.

7.2 Must Have Requirements Coverage

The following table presents the mapping of the 41 functional requirements identified as most important,
on the components and the layers of the architecture.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 61

Table 13: “Must have” functional requirements mapped to components

Resources

Adaptation

Recommen

der

Application

Fragment. &

Deployment

Recomm.

Situation

Detection

Mechanism

Mobile

Context

Analyser

Workload

Predictor

Cloud &

Edge

Resources

Repository

Application

Placement &

Scheduling

Controller

Autonomic

Data Int.

Application

 Manager

Cloud

Deploymen

t and

Manag.

Edge

Deploymen

t and

Manag.

Autonomic

Resource

 Manager

Monitoring

Probes

Installer

Security

Enforcemen

t

Mechanism

Mobile

On/Offload

Processing

Communica

tion &

Message

Broker

Inter-site

Network

Virtualisati

on

Monitoring

Probes

On/Offloadi

ng Agents

Spatio-

Temporal

Processing

Library

FR-1 x x
FR-3 x x x x
FR-5 x x x
FR-6 x
FR-7 x
FR-8 x
FR-9 x x
FR-14 x x
FR-16 x
FR-17 x
FR-18 x
FR-19 x
FR-20 x
FR-22 x
FR-23 x
FR-24 x
FR-25 x
FR-26 x
FR-27 x
FR-31 x
FR-33 x
FR-35 x
FR-37 x
FR-39 x x
FR-40 x x
FR-41 x x
FR-42 x
FR-44 x
FR-45 x
FR-51 x
FR-53 x
FR-55 x
FR-56 x
FR-57 x x
FR-58 x x
FR-59 x
FR-61 x
FR-62 x
FR-63 x
FR-69 x
FR-70 x

Meta-Management Layer Control Layer Cloud-Edge Comm. Layer Cloud Infastructure / Devices Layer

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 62

7.3 Should Have Requirements Coverage

The following table presents the mapping of the 17 functional requirements identified as most important, on the components and the layers of the architecture.

Table 14: “Should have” functional requirements mapped to components

Resources

Adaptation

Recommen

der

Application

Fragment. &

Deployment

Recomm.

Situation

Detection

Mechanism

Mobile

Context

Analyser

Workload

Predictor

Cloud &

Edge

Resources

Repository

Application

Placement &

Scheduling

Controller

Autonomic

Data Int.

Application

 Manager

Cloud

Deploymen

t and

Manag.

Edge

Deploymen

t and

Manag.

Autonomic

Resource

 Manager

Monitoring

Probes

Installer

Security

Enforcemen

t

Mechanism

Mobile

On/Offload

Processing

Communica

tion &

Message

Broker

Inter-site

Network

Virtualisati

on

Monitoring

Probes

On/Offloadi

ng Agents

Spatio-

Temporal

Processing

Library

FR-2 x
FR-4 x

FR-10 x
FR-12 x
FR-13

FR-15 x
FR-28 x
FR-30 x x x

FR-32 x
FR-34 x x
FR-36 x x x

FR-48

FR-52

FR-54 x
FR-64 x x
FR-65

FR-68

Meta-Management Layer Control Layer Cloud-Edge Comm. Layer Cloud Infastructure / Devices Layer

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 63

7.4 Mapping of Requirements to Phases

In order to help on the better understanding of the what the platform will do, the following table, depicts
the mapping of the requirements covered by the architecture to the phases identified and explained in the
section 4.2.

Table 15: Mapping of the requirements

ID Description

Phase 1:

Design

Time

Phase 2:

Initial

Applicatio

n

Placement

Phase 3:

Applicatio

n

Reconfigur

ation
FR-1 Ability to register cloud infrastructure by providing appropriate credentials and properties x

FR-3 Ability to monitor resources x x

FR-5 Anomaly detection and alerting x

FR-6 Platform offers a unified view of the sites available x

FR-7 Platform offers a unified view of the resources available x

FR-8 Platform reports global resource utilization x

FR-9 Ability to use cloud and edge compute resources x

FR-14 Ability to apply network function virtualization x

FR-16 Ability to implement custom scalability policies x

FR-17 Ability to monitor the queue of workflows x

FR-18 Ability to manually update the amount of resources x

FR-19 Platform allows to express the network configuration for all workloads x

FR-20 Platform reports current and recent workload resource consumption x

FR-22 Platform supports workload migration x

FR-23 Platform reports network usage per machine, and per site x

FR-24 Ability to define application deployment constraints x

FR-25 Ability to define data placement/storing constraints x

FR-26 Ability to enact (e.g. call an API) the execution of the initial deployment x

FR-27 Ability to receive recommendations on initial application placement x

FR-31

Ability to express runtime scalability and qualitative constraints at the level of individual Data-

Intensive Applications(DIAs)
x

FR-33 Ability to receive recommendations on application placement reconfiguration x

FR-35 Ability to enact (e.g. call an API) the implementation of the application placement reconfiguration x

FR-37 Ability to use an editor for defining a situation triggering model x

FR-39 Ability to detect interesting/critical situations that may lead to application reconfigurations or data x

FR-40 Ability to extract high-level context for edge resources based on lower level monitoring data x

FR-41 Ability to send / retrieve events to / from the Communications Broker (e.g. through an API) x

FR-42 Ability to register data sources (real-time) to the system x

FR-44 Enable an efficient and scalable access to past data x

FR-45 Ability to provide new methods for data processing (real-time, batch) x x

FR-51 Ability to write/design custom selection scripts and apply it to desired tasks x

FR-53 Ability to build complex workflows from a WEB interface x

FR-55 Ability to write custom tasks based on common script language x

FR-56 Platform understands the notion of locality x x x

FR-57 Platform estimates inter-site network cost x

FR-58 Platform estimates inter-site delay x

FR-59 Platform accepts placement constraints x x x

FR-61 Ability to guide fragmentation of DIAs using annotations x

FR-62 Ability to guide the deployment of DIA fragments over cloud and edge resources using annotations x

FR-63 Ability to accept recommendations about DIAs fragmentation and deployment x

FR-69

Ability to containerize a Data Intensive Application and provide both the configuration layer and the

scalability profile
x

FR-70 Ability to wrap/upload and use a data intensive application in the PrestoCloud platform x

FR-2 Ability to set and attach metadata to resources based on a common description model x

FR-4 Ability to centralize the monitoring in a common view or place x

FR-10 Uniform resource interaction (harmonized API for different cloud providers) x x

FR-12 Platform enables the establishment of secure inter-site channels x

FR-15 Ability to modify network rules to maintain regulatory compliance x

FR-28 Ability to receive recommendations on initial data placement x

FR-30 Ability to enact (e.g. call an API) the implementation of the initial data placement x

FR-32 Ability to express runtime data migration constraints x

FR-34 Ability to receive recommendations on data migration x

FR-36 Ability to enact (e.g. call an API) the implementation of data migration x

FR-54 Ability to manage (export/import) custom workflows x

FR-64 Ability to adjust fragmentation and deployment x

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 64

8. Conclusions
These deliverable reports on the work done in WP2 in the context of developing a conceptual architecture
that will satisfy very challenging requirements from the technical and use cases point of view. The
deliverable is strongly influenced by several other deliverables:

- D2.1 that provides the analysis of the state of the art
- D2.2 that provided the list of requirements for the development of the system
- D2.4 that explains the data processing infrastructure
- D7.1 that describes use cases (and their requirements)

Since the envisioned Platform is very complex, this work also reflects the work of partners in different
research and technology areas (like Cloud computing, Big Data, Task scheduling, Adaptive systems) and
illustrates the connections to them, stating clearly our (unique) contributions.

The architecture intends to create a novel computing and management infrastructure. It will enable an
efficient deployment and realization of the data-intensive applications, the development of a proper
architecture is a correspondingly challenging task.

By using a layer-based approach, we designed an architecture which enable complex processing within a
particular layer and an efficient communication between layers in order to realize complex processing
pipelines

In order to reflect the distributed nature of the system and the need to make the loose coupling between
components, the data communication architecture postulates on the principles of event-driven
architecture (EDA), having the communication and message broker as the central interaction hub.
Moreover, EDA enables a proper scaling of the platform, by supporting an easy extension with new types of
data sources (resources) and data processing elements. This is one of the fundamental properties for
supporting the work with data-intensive applications (real-time big data applications) which are the focal
point of the platform.

In parallel, through a powerful task scheduling and adaptation mechanism, the architecture supports an
efficient detection of adaptation opportunities in the underlying computing infrastructure and an effective
implementation of them, creating the basis for an adaptive management of complex applications. The
adaptation mechanism covers the entire stack of processing resources, starting from edge devices till multi
cloud infrastructure, making the Platform unique comparing to the state of the art.

Since PrEstoCloud aims to enable a continuous improvement (reconfiguration) of a complex computing
infrastructure, the architecture is based on the well-known self-adaptivity pattern: Monitor – Analyze –
Plan – Execute - Knowledge (MAPE-K model).

We argue that the presented PrEstoCloud architecture is very innovative, enabling the realization of several
advanced scenarios that are challenging for existing architectures in different domains, like

 Fog computing - PrEstoCloud architecture enables dynamic service replacement along the entire
fog computing infrastructure, from Edge to the Cloud and back

 Big data - the architecture enables continuous monitoring and improvement of the QoS in real-time
data analytics applications

 HPC – the architecture enables self-adaptive reconfiguration of deployed computing

During the actual development process it will be possible to make changes and adaptations to the
conceptual architecture. The final results of the architecture will be documented in D6.1 Architecture of the
PrEstoCloud platform.

PrEstoCloud GA 732339 Deliverable D2.3
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 65

9. References
[IBM05] IBM, An architectural blueprint for autonomic computing, Autonomic Computing White Paper,
June 2005

[Paas] PaasWord Context-Aware Security Model, “https://www.paasword.eu/results/context-aware-
security-model/.” .

[SAN14] Sanjay P. Ahuja, Naveen Mupparaju, Performance Evaluation and Comparison of Distributed
Messaging Using Message Oriented Middleware, Computer and Information Science; Vol. 7, No. 4; 2014
ISSN 1913-8989 E-ISSN 1913-8997

