
PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 1

Project acronym: PrEstoCloud

Project full name:
Proactive Cloud Resources Management at the Edge

for efficient Real-Time Big Data Processing

Grant agreement number:

732339

D2.4 Format and procedures for
plugging in real-time data streams

Deliverable Editor: Nenad Stojanovic (Nissatech)

Other contributors:

Birkan Dag, Birgit Helbig (Software AG), Panagiotis
Gkouvas, Giannis Ledakis (Ubitech), Dimitris Apostolou,
Yiannis Verginadis, Nikos Papageorgiou (ICCS), Guillaume
Urvoy-Keller (CNRS), Iyad Alshabani, Vincent Kherbache
(ActiveEON), Nenad Stojanovic, Dusan Kostic, Aleksandar
Stojanovic (Nissatech), Quentin Jacquemart (CNRS),
Nectarios Efstathiou (ADITESS)

Deliverable Reviewers: George Kioumourtzis (ADITESS)
Yevgeniya Sulema (NAM)

Deliverable due date: 31/07/2017

Submission date: 31/03/2018

Distribution level: Public

Version: 1.4

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 2

This document is part of a research project funded
by the Horizon 2020 Framework Programme of the European

Union

LIST OF CHANGES AS COMPARED TO 1
ST

 SUBMISSION

Deliverable D2.4 is being resubmitted, in order to address the reviewers’ recommendations following
the outcome of the 1st interim review of the PrEstoCloud Project. In particular, the revisions aim at the
rectification of the following recommendations:

 Recommendation 1

“One of the challenges of the deliverable is to deal with big data however, the amount of
data to deal with is never quantified.”

 Recommendation 2

“There are three ways of deploying the architecture. However, the architecture itself is not
described. What is the database for? It seems that all data is stored there. Which kind of
database is being used for storing big data streams with millions of events per second?
Later several centralized databases are mentioned which cannot provide such a support.”

 Recommendation 3

“Figure 20 in Section 6.4.1 is not explained. What is the role of each component (Hbase,
Hadoop…)?”

 Recommendation 4

 “There are several undefined references in the deliverable.”

 Recommendation 5

 “The definition of the data of the use cases should include the number of events /time unit
for streams and the size of the events.”

First, to address the 1st issue and the 5th issues, we have extended the deliverable D7.2. In chapter 7 of
this deliverable we have included a KPI table per use case. The use case partners extended the
definition of the use case relevant data sets and included the detailed information about data to deal
with. This data belongs to Big Data category, as it covers at least one dimension (V) of Big Data.

Our responses to the 2nd recommendation are included at the end of section “3.2.2 Real-time
integration architecture”.

Regarding the 3rd recommendation, we clarify the role of each component in section 3.6.1 right below
Figure 20.

As far as the 4th recommendation is concerned, we have corrected all undefined references.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 3

Change Log

Version Date Amended by Changes

0.1 29.06.2017 Nenad Stojanovic Definition of the scope (all relevant partners)

0.2 17.07.2017 Nenad Stojanovic Structure, contributions delegated

0.3 21.07.2017 Nenad Stojanovic Added content from one use case

 0.4 24.07.2017 Nenad Stojanovic Explained architecture, provided examples

 0.5 24.07.2017 Dimitris Apostolou

Yiannis Verginadis

Nikos Papageorgiou

Provided content for section 5

0.6 25.07.2017 Birgit Helbig Provided content for section 5 for Software AG

0.8 28.8.2017 Nenad Stojanovic,
Dusan Kostic,

Aleksandar Stojanovic

Extended content

Formatted properly

0.9 28.8.2017 Nenad Stojanovic Reviewers comments implemented

0.95 11.9.2017 Nenad Stojanovic Tuning of the whole document to polish the style

1.1 07/02/2018 All partners Analysis of the reviewers’ recommendations following
the outcome of the 1st Review

1.2 20.03.2018 Nissatech, end users Review comments addressed

1.3 28.03.2018 Nissatech Consolidated version ready for review

1.4 31.032018 Nissatech Final version, review comments addressed

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 4

Table of Contents

List of Changes as Compared to 1st Submission 2

Table of Contents 4

Definitions, Acronyms and Abbreviations 7

Executive Summary 8

1. Introduction 9

1.1 Objectives 9

1.2 Relation to other deliverables 9

1.3 Challenges 9

1.4 Method 9

1.5 Structure of the document 9

2. Data collection and processing 10

2.1 BDVA reference architecture 10

2.2 Data preparation 11

2.3 Data analytics 13

3. The architecture for data processing and collection 17

3.1 The need for real-time processing on the edge 17

3.1.1 The role of Edge Computing: basics 17

3.1.2 Creating a Smart Data Architecture: requirements 18

3.1.3 The relation to the fog computing: impact 18

3.2 Data architectures types 19

3.2.1 Local integration architecture 19

3.2.1 Remote integration architecture 20

3.2.2 Real-time integration architecture 22

3.3 Contribution to the data architecture: ActiveEON 25

3.3.1 Overview 25

3.3.2 Autonomic resource manager 25

3.3.3 Autonomic Data-intensive Application Manager 27

3.3.4 Fog Deployment & Monitoring 28

3.3.5 Planned developments 31

3.4 Contribution to the data architecture: ICCS 32

3.4.1 Overview 32

3.4.2 Data format 33

3.5 Contribution to the data architecture: CNRS 35

3.5.1 BtrPlace 35

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 5

3.5.2 Inter-Site Network Virtualization 36

3.6 Contribution to the data architecture: Nissatech 37

3.6.1 Overview 37

3.6.2 Data format 40

3.7 Contribution to the data architecture: Ubitech 41

3.8 Contribution to the data architecture: JSI 42

3.9 Contribution to the data architecture: Software AG 43

3.9.1 Supported integration scenario and data sources 43

3.9.2 Apama’s Integration Framework (IAF) 44

3.9.3 Connectivity Plug-Ins 45

4. Data in use cases 49

4.1 Introduction 49

4.2 Wide Area Video Surveillance Use Case – ADITESS 49

4.2.1 Available data 49

4.2.2 Data access 50

4.3 Media Use Cases – LiveU 53

4.3.1 Available data 53

4.3.2 Data access 57

4.4. Logistics Use case – CVS 59

4.4.1 Available data 59

4.4.2 Data access and storage 61

5. Use case Information Flow 63

5.1 Surveillance use case 63

5.2 Media use case 63

5.3 Logistics use case 64

5.4 Use case data flow abstraction 64

6. Conclusion 65

7. Appendix 1 - Apama connectivity examples 66

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 6

List of Figures

Figure 1: BDVA Reference architecture ... 10

Figure 2: Data Processing Life Cycle.. 11

Figure 3: Examples for Types of streaming data .. 12

Figure 4: Dynamicity .. 12

Figure 5: Seasionality .. 12

Figure 6: Complex data ... 13

Figure 7: Types of analytics .. 13

Figure 8: Learning methods as parts of data analytics .. 14

Figure 9: Dimension reduction .. 14

Figure 10: Clustering ... 15

Figure 11: Pattern recognition .. 15

Figure 12: Anomaly detection .. 15

Figure 13: Side by side view of edge and fog architectures ... 19

Figure 14: Local integration architecture ... 20

Figure 15: Remote integration architecture with implicit triggers .. 21

Figure 16: Remote integration architecture with a direct access to the database ... 22

Figure 17: Real-time integration architecture .. 23

Figure 18: The existing architecture provided by ActiveEon ... 25

Figure 19: The interactions with other PrEstoCloud components and actors .. 31

Figure 20: Data integration architecture ... 38

Figure 21: Apama connectivity overview.. 43

Figure 22: Example of the HTTP Chain Invoking External Services .. 46

Figure 23: Types of data sources and processing (ADITESS) ... 49

Figure 24: Data volume over one year ... 53

Figure 25: Data volume over two days ... 54

Figure 26: Number of Streaming devices over one year ... 54

Figure 27: Number of Streaming devices over 2 days ... 54

Figure 28: Media Use Case Data Sources ... 55

Figure 29: Media Use Case Data Samples .. 56

Figure 30: Information flow ADITESS use case .. 63

Figure 31: Information flow LiveU use case ... 63

Figure 32: Information flow CVS use case .. 64

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 7

Definitions, Acronyms and Abbreviations

Acronym Title

API Application Programming Interface

BDVA Big Data Value Association

CEP Complex Event Processing

Dx Deliverable (where x defines the deliverable identification number e.g. D1.1.1)

EDA Event Driven Architecture

ETL Extract Transform Load

GPS Global Positioning System

GTP General Trip Preferences

HTTP HyperText Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I/O Input / Output

ICT Information and Communication Technologies

IoT Internet of Things

JSON JavaScript Object Notation

PubSub Publish-Subscribe Middleware

REST Representational State Transfer

SQL Structured Query Language

TB Terabyte

WP Work Package

XML Extensible Markup Language

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 8

Executive Summary

An intensive data-driven processing begins with an efficient collection and pre-processing of available
data. This task requires a valid architecture and a set of methods for efficient processing. It also
requires a deeper analysis of the properties of data sources in order to understand properly which
methods can be applied. This deliverable elaborates on these topics, put in the specific context of
selected use cases. Indeed, in a complex processing structure, as presented in this project, it is
important to understand the relations between the available data sources and components that
process this data, in order to define the most efficient architecture for gathering and processing data.

There are several challenges related to this task and they are taken as the main requirements in
defining the architecture. The most important ones are:

- the amount of data processed requires the application of big data technologies;

- real-time nature of processing requires the usage of the architectures suitable for efficient data
collection and processing;

- the complex processing structure and the need for doing a part of the processing close to data
sources (edge) require a flexible processing infrastructure (edge / fog computing).

There are three main outcomes from this deliverable, which will be used in developing the conceptual
architecture of the system (D2.3):

- the design of the architecture for data collection and processing

- the structure of the data adapters which are required by each component (technical partner)
in order to get and understand in the proper functional context the data from available data
sources

- the specification of the nature of data source available in use cases, emphasizing their big data
nature (which requires specific types of collection and processing)

This deliverable will serve as one of the sources for the development of the conceptual architecture
(D2.3).

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 9

1. Introduction

1.1 Objectives

The main objective of this deliverable is to elaborate on the methods how the data from external data
sources can be gathered and stored in the systems, in order to be processed as planned.

In a complex processing structure, as presented in this project, it is important to understand the
relations between the available data sources and components that process this data, in order to define
the most efficient architecture for gathering and processing data.

Moreover, in an edge processing architecture, as required by use cases, it is very important to
understand what kind of processing is required close to data sources in order to define the most
suitable methods/technologies.

1.2 Relation to other deliverables

This deliverable will serve as an important source for the deliverable D2.3 related to the development
of the conceptual architecture.

The outcome of this deliverable will also serve as input for D3.1 (Communication broker for real-time
data streams) and the pilot evaluation deliverables in WP7.

1.3 Challenges

There are many challenges related to the data collection and preprocessing which should be resolved
in order to realize the planned system properly. We discuss them briefly:

- the amount of data processed requires the application of big data technologies;

- real-time nature of processing requires the usage of the corresponding architectures;

- the complex processing structure and the need for doing a part of the processing close to data
sources (edge) require a flexible processing infrastructure (edge / fog computing).

1.4 Method

This work is based on three main sources:

- The findings from the relevant (mainly industry) communities,

- The need of the technical components regarding the data (sources),

- The requirements from use cases regarding processing available data sources.

1.5 Structure of the document

This deliverable is structured in the following way:

- In section 4 we present an analysis of the methods for data collection and preprocessing

- In section 5 we discuss the architectures for efficient data collection and preprocessing

- In section 6 we present an overview of the data sources that are available in use cases and the
methods for accessing data

- In section 7 we focus on the use case data flow as it is driven by the analytic demands

- In section 8 we provide some concluding remarks.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 10

2. Data collection and processing
In this section we provide an analysis of the challenges for the data collection and processing in the
context of the types of data that can be processed in envisioned scenarios.

In addition, we provide information related to the existing work in the classification of data sources
and methods for data gathering and processing. As the main source we use the work done in the scope
of BDVA1 (Big Data Value Association, www.bdva.eu), related to the architectures for the big data
processing. Although there are different proposals for such an architecture, due to the involvement of
several partners in the BDVA and the possibility to create an impact on its work (and the reference
architecture), we have decided to follow this model.

2.1 BDVA reference architecture

The work on the architecture for data collection and processing is based on the work done in BDVA,
mainly focusing on the reference model for Big Data Processing, as presented in Figure 1. This figure
explains a processing pipeline from the extraction of data and its management, through the
processing/analytics, till the visualization.

The most important parts of the architecture for this deliverable are:

1. Classification of Data Types, which suggests how big data sources can be classified in order to
better understand how they can be connected to the processing system and

2. Data Processing cycle, which explains how the data can be processed (big data processing
pipeline).

Figure 1: BDVA Reference architecture

1 The partner responsible for this deliverable is very active in BDVA. Nenad Stojanovic is the co-chair of
Data analytics (TF6 SG3)

http://www.bdva.eu/

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 11

From the data preparation and processing point of view, the type of data is the most crucial element
that can predetermine rest of the processing pipeline. For example, real-time streaming data is usually
processed on-the fly mode and stored only on demand. Therefore, we need to clarify the nature of data
and the way how it will be collected in order to be able to define an optimal architecture for
processing.

As one of the important contributions of this deliverable, in Figure 2 we illustrate the relations
between three main phases (Data Preparation, Analytics, Visualization) in order to get a better
understanding of how the data can be collected and processed. Consequently, it provides a high level
view on the data processing pipeline.

This figure gives an important global context for the work presented in this deliverable. In the rest of
this subsection we provide more details about this context (phases).

Figure 2: Data Processing Life Cycle

2.2 Data preparation

There are several characteristics we want to know from a data source in order to understand the
nature of the data to be processed and to define the most efficient processing methods (for example,
normalization of values can be in done in different ways depending on the nature of data). They are
summarized as the following features of a data type:

• Type of data

– Source: e.g. sensor X on machine Y (IoT)

– Type/storage: e.g. real-time streams/historian

– Type of streaming data:

• E.g. smooth, irregular, multimodal, sparse , discrete, (cf. Figure 4.3)

– Volume (past data): e.g. 3 years, ca. 10TB

– Velocity (real-time data), e.g. freq.: 1kHz

– Uncertainty:

(incl. the main cause/source of uncertainty)

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 12

– Dynamicity (changeability), (cf. Figure 4.4)

– Seasonality, (cf. Figure 4.5)

– Complexity, (cf. Figure 4.6)

The goal is to collect all mentioned features in order to alleviate the work of developing adapters (pre-
processing pipeline). In the following figures we illustrate some of these features.

Figure 3: Examples for Types of streaming data

Figure 4: Dynamicity

Figure 5: Seasionality

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 13

Figure 6: Complex data

2.3 Data analytics

There are four main types of data analysis:

– Descriptive analytics

• Explaining what is happening

– Diagnostics

• Explaining why did it happen

– Prognostics

• Predicting what can happen

– Prescriptive

• Proactive handling

Their relations between mentioned types of analytics are shown in Figure 7.

Figure 7: Types of analytics

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 14

This classification is important in order to understand the nature of some processing methods, as
illustrated in Figure 8.

Figure 8: Learning methods as parts of data analytics

Following figures illustrate some of the processing methods, put in the context of the anomaly
detection scenario:

 Figure 9: the dimensionality of the input data set should be decreased in order to perform
some data analytics methods (e.g. clustering)

 Figure 10: the clusters of the normal and anomalous behaviour should be derived
(machine learning step)

 Figure 11: these clusters should be described as patterns that can be detected on the real-
time streams

 Figure 12: anomalies should be detected in the real-time streams

Figure 9: Dimension reduction

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 15

Figure 10: Clustering

Figure 11: Pattern recognition

Figure 12: Anomaly detection

It is clear that the data processing is rather complex and requires special methods in order to cope
with the challenges originating from the amount and complexity of data (i.e. volume, variety, velocity,
veracity of big data). This is one of the main reasons why the real-time data from real-world data
sources should be processed in a systematic way, which is part of the descriptions given in the next
section.

Just as an illustration of the complexity of the problem: if the data analytics applied on the data
collected from the past requires a complex pre-processing (e.g. the application of some dimension
reduction methods) in order to drive knowledge (e.g. clusters of normal/anomalous behaviour), then

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 16

the system that should realize real-time detection of anomalies in the streaming data has to implement
all pre-processing steps as the real-time processing pipeline.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 17

3. The architecture for data processing and collection
In this section we provide an analysis of the types of architectures which can be applied for the data
collection and pre-processing and detail the concrete architectural contributions from the technical
partners.

We start with a discussion of the types of analyses which can be applied in the pre-processing step,
implying the need for architectures suitable for intensive processing close to a data source.

3.1 The need for real-time processing on the edge

IDC2 pointed out that, of the 160 ZB, about a quarter of it will be real-time data in nature (generated,
processed and instantly accessible) up from around 5 percent today, and most of that real-time data
(95 percent) will come from the world of IoT. However, data storage capacity has not, and will not, be
able to keep up. In the words of IDC, “…the quantity of data generation can and will continue to
outpace any reasonable expectation of our ability to store all of the data.”

It turns out by 2025 only a tiny percentage of data – between 3 percent and 12 percent depending on
the source – will be able to be stored3. Quite literally, nowhere near enough storage hardware can be
manufactured to handle the predicted data volumes. The conclusion is that the data must be collected,
processed and analyzed in-memory, in real-time, close to where it is generated.

3.1.1 The role of Edge Computing: basics

Data received from a data source is not information. Data is raw, unfiltered, unprocessed facts. Much of
that data can be:

3. repetitive (e.g. high-speed sensor data),
4. generally useless (a lot of developer-produced application log files), or
5. lacking sufficient context (data in the form of binary code).

The primary goal of Edge Computing Layer must then be to transform data into information. It is the
role which was traditionally dedicated to the data adapters. Therefore, we see the notion of Edge
Computing as an extension of the data adapters, which are focused on complex processing of the input
data. This transformation can be achieved through a combination of following processing types:

1. “simple event processing” EPAs - filter and routing,
2. “mediated event processing” EPAs - enrichment, transformation, validation
3. “complex event processing” EPAs - pattern detection.

The list is derived from the types of event processing agents4 proposed in the CEP (Complex Event
Processing Community).

1. Filtering is the possibility to select a part of the input data according to a criteria (filter). It is a
technique that enables focusing only on a subset of the input data.

2. Enrichment is the technique for extending the initial data set with some additional

information. It is especially useful if the input stream doesn’t contain sufficient context to be
properly processed, like only IDs, codes or binary data. Real-time data is joined with some
context (about devices, parts, customers, etc.) in order to get valuable information.

3. Pattern detection is the process of matching input data stream with a predefined “template”
(pattern). It is the common term for condensing or grouping data, usually time-series data, to

2 http://www.seagate.com/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

3 https://www.rtinsights.com/the-rise-of-real-time-data-prepare-for-exponential-growth/

4 http://epthinking.blogspot.rs/2008/04/on-event-processing-agents.html

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 18

reduce its granularity. This can involve basic statistical analysis, sampling, or other means that
retain the information content, but reduce the frequency of the data. A related notion is change
detection which, as the name suggests, only outputs data when it changes. The most
appropriate technique will depend on the source data and use case.

3.1.2 Creating a Smart Data Architecture: requirements

We consider edge processing as part of data architecture to handle the predicted deluge of data. More
sophisticated analytics functions can also be applied at the edge, as we indicated in the previous
subsection. Many use cases call for very fast reaction times to complex scenarios. In these situations,
bringing analytics capabilities such as real-time correlation, complex event processing, and machine
learning scoring to the edge has numerous advantages5.
The edge can be scaled as source devices and data ingestion grows, while still retaining fast response
times, and often requires lower cost hardware. Analytics at the edge has the added side-effect that the
source data for analytics doesn’t have to leave the edge, only the results, further reducing the need for
data storage. This is important from several reasons, starting from the privacy till the efficiency in the
data transport and costs.
Of course, overall big data processing architecture includes more than edge processing and analytics.
There may be on-premises and cloud requirements for further processing, analytics, storage and
machine learning. The key is to recognize that data can be collected, processed, analyzed and stored in
many different zones of a smart data architecture, and it is essential to perform each of these actions
where it most makes sense to gain the greatest value from the exponential growth in data.

3.1.3 The relation to the fog computing: impact

Fog computing – a term originally coined by Cisco—is in many ways synonymous with edge
computing and in this subsection we resolve that relation briefly.

OpenFog Consortium (https://www.openfogconsortium.org/) describes fog computing as bridging the
continuum from cloud to things. It’s a continuum because fog overlaps cloud and things and fills the
computing gap in between. Fog provides the missing link in what data needs to be pushed to the
cloud, and what should be analyzed locally – at the edge.

Pragmatical explanation of the difference (https://www.rtinsights.com/what-is-fog-computing-open-
consortium/): „While edge computing or edge analytics may exclusively refer to performing analytics
at devices that are on, or close to, the network’s edge, a fog computing architecture would perform
analytics on anything from the network centre to the edge.”

In contrast to the cloud, fog platforms have been described as dense computational architectures at
the network’s edge. Characteristics of such platforms reportedly include low latency, location
awareness and use of wireless access. Benefits include real-time analytics and improved security.

The following figure6 illustrates the differences between two concepts. Edge runs specific applications
in a fixed logic location and provides a direct transmission service without data analysis. Fog works
with edge to run applications in a multi-layer architecture that decouples and meshes the hardware
and software functions, allowing for configuring / reconfiguring for different applications while
performing intelligent transmission services with computing/storage/communication capabilities
along the cloud to things continuum.

5 https://www.rtinsights.com/the-rise-of-real-time-data-prepare-for-exponential-growth/

6https://www.rtinsights.com/10-ways-fog-computing-extends-the-edge/
?utm_medium=email&utm_campaign=August%2023%202017&utm_content=August%2023%202017+Version+
A+CID_d55462c577002d50cb05f49f4536e454&utm_source=CampaignMonitor&utm_term=Read%20more

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 19

Figure 13: Side by side view of edge and fog architectures

However, in order to simplify the explanation, in this deliverable we will not make a difference
between two concepts, which will be resolved in D2.3.

3.2 Data architectures types

We have developed three types of architectures for the integration of data sources into a
platform/system for data processing (general one):

1. Local integration architecture (cf. Figure 14)
2. Remote integration (cf. Figure 15 and Figure 16)
3. Real-time integration architecture (cf. Figure 17)

The main reason for this classification is the need for the flexibility for the data processing, since there
are different policies and demands for data handling in different organizations/environments. We
describe shortly each of them.

3.2.1 Local integration architecture

Local integration architecture assumes that the data processing platform can be deployed in the
internal/local use case infrastructure. In that case:

1. Data source is connected to a dedicated database
2. Remote client is communicating with the database
3. Local client is communicating with the external service (installed locally)

Figure 14 differs also the case that the Remote client can be only implicitly connected to the database
(triggers are initiated from another component).

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 20

Figure 14: Local integration architecture

3.2.1 Remote integration architecture

Remote integration architecture assumes that the data processing platform cannot be deployed in the
internal/local use case infrastructure, but in an external space (e.g. public/private cloud). In that case:

1. Data source is connected to a dedicated database
2. Remote client is communicating with the database
3. Local client is communicating with the external service (installed locally).

Figure 15 shows the case that the Remote client can be only implicitly connected to the database
(triggers are initiated from another component). This is the situation where the direct access to the
data source is not allowed.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 21

Figure 15: Remote integration architecture with implicit triggers

Figure 16 shows an architecture with a direct access to the database.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 22

Figure 16: Remote integration architecture with a direct access to the database

3.2.2 Real-time integration architecture

Real-time integration architecture (cf. Figure 17) assumes that the real-time data can be directly
transferred to the external service (asynchronously, through a broker). In that case:

4. Data source is connected to a Remote client
5. Remote client is communicating with the Broker (pub-sub)
6. Local client is communicating with the Broker (pub-sub).

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 23

Figure 17: Real-time integration architecture

It is important to emphasize that our preferred type of the data architecture is the real-time
integration due to several advantages, originating from the pub-sub architecture, which is in the
nutshell of this integration type:

1. Loosely decoupling of data sources and data processing modules

2. Easier integration of new data sources (and processing modules)

3. Scalability of the architecture

Below we include our responses regarding to the following reviewers’ recommendation:

Comment: “There are three ways of deploying the architecture. However, the architecture
itself is not described. What is the database for? It seems that all data is stored there. Which
kind of database is being used for storing big data streams with millions of events per

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 24

second? Later several centralized databases are mentioned which cannot provide such a
support.”

Figures 14 – 17 present possible architectures for the integration of data sources in the context how
and where the data (originating from data sources) will be processed, depending mainly on the
constraints related to deployment of the platform (D2.3). For example, if the platform cannot be
deployed in the internal/local use case infrastructure, but in an external space (e.g. public/private
cloud), we will use Remote integration architecture. Presented situations correspond to different cases
that can be found in an industry environment.

As we explicitly stated, our preferred type of the data architecture is the real-time integration due to
several advantages mentioned above.

The database presented in figures is the local storage that is used by the end users for persisting the
data. This is not a part of our architecture. Such a database can be any operational historian, like
OSISoft PI (https://www.osisoft.com/).

In the rest of this section we provide more details about the integration architectures of all
components which communicate to any type of external data sources.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 25

3.3 Contribution to the data architecture: ActiveEON

3.3.1 Overview

All three ActiveEon’s components (resp. Autonomic resource manager, Autonomic Data-intensive
Application Manager and Fog Deployment & Monitoring) rely on a single and central database. They
currently support HSQL, MariaDB, MySQL, Oracle, PostgreSQL and SQLServer. The database need to be
initially setup with specific usernames and databases but there is no constraint on the location of the
database which can be hosted locally or remotely with secure communications. However, the three
aforementioned components must be strictly executed in a single machine to be able to communicate
together.

Figure 18 shows an overview of the current architecture provided by ActiveEon. All interactions
between internal components are represented and especially the communications with the central
database. The main components used in PrEstoCloud are highlighted with blue color and the database
appears in red.

Figure 18: The existing architecture provided by ActiveEon

Following more details about each component including input/output data formats and interactions
with other components.

3.3.2 Autonomic resource manager

The Autonomic resource manager component is in charge of deploying, acquiring and releasing
resources. The resources can be virtual (Virtual Machines (VMs), containers) or physical (local/remote
servers, raspberry/odroid, drone, camera, etc.).

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 26

It will interact with public or private cloud infrastructures’ (IaaS) REST APIs to deploy, configure, and
release Virtual Machines (VMs). The VMs are configured to execute an agent (using the Java Virtual
Machine (JVM)) that will interact with the Autonomic resource manager to send status notifications,
and with the Autonomic Data-intensive Application Manager component to retrieve and execute tasks
and send back outputs.

The communication between deployed ‘agents’ and the two aforementioned components is based on
custom communication protocols, namely PNP and PAMR, that allow to establish secure connections
and to transit via an external router in order to allow communications behind Network Address
Translation (NAT) configured on both sides.

All these internal communications are already implemented and therefore data format information is
not mentioned in the document.

To be able to communicate with private and public IaaS, the Autonomic resource manager must be
configured first. To do so, it shall receive a set of required configurations about each IaaS including
credentials, metadata and information about the VM to deploy but also the scaling policies to use in
order to dynamically scale/up down the amount of resources in each IaaS. The information can be
given manually from the provided WEB portal, or from its REST interface. Here is the description of
the query to send:

POSPOST http://www.example.com/rm/nodesource/create/

Form parameters

nodeSourceNamestring
name of the node source to create

infrastructureTypestring
fully qualified class name of the infrastructure to
create

infrastructureParameters[string]
String parameters of the infrastructure, without the
parameters containing files or credentials

infrastructureFileParameters[string]
File or credential parameters

policyTypestring
fully qualified class name of the policy to create

policyParameters[string]
String parameters of the policy, without the
parameters containing files or credentials

policyFileParameters[string]
File or credential parameters

Header parameters

sessionidstring
current session
id

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 27

Returns

true if a node source has been created

3.3.3 Autonomic Data-intensive Application Manager

The Autonomic Data-intensive Application Manager is in charge of executing and scheduling
workflows’ tasks into the set of available resources (acquired by the Autonomic resource manager).

The resources can be selected according to a ‘selection script’ which can be defined for each concerned
tasks. For example, different tasks from a single workflow may be executed in different types of
resources depending of the needs. To do so, the selection script must be defined as part of the
workflow tasks.

The workflows to execute can be created and managed from a dedicated WEB portal or through the
REST APIs. They are stored into a virtual catalog which rely itself on the central database.

A workflow can be imported/exported into an existing XML format. Here is the description of the
query to send in order to upload a new Workflow:

POSPOST http://www.example.com/studio/workflows/

Header parameters

sessionidstring identifier of the
user session

Body

Accept: application/json
{

← id:number

← metadata:string

← xml:string

← name:string

}

Returns

Content-Type: application/json

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 28

{

← name:string

← xml:string

← metadata:string

← id:number

}

To manage data intensive applications, the Autonomic Data-intensive Application Manager can be
used as a meta-scheduler by deploying and managing underlying schedulers (e.g. MESOS clusters). In
this case, the component will act as a high level location aware scheduler by deploying, configuring,
and migrating sub-scheduling environments in specific locations (i.e. according to the type of
resource). Therefore, all data processing tasks will not directly go through this component, but rather
to the underlying scheduling environment which actually execute the tasks.

Placement decisions are computed by the Application Placement and Scheduling component
(BtrPlace) and provided back to the Autonomic Data-intensive Application Manager.

The initial placement computation must be provided through the workflow itself by implementing
selection scripts as described above.

Resources adaptation can be then issued by the Resources Adaptation Recommender by directly
updating the scaling policy of the desired infrastructures (eg. increase/decrease the amount of
deployed resources) for example. When new placement decisions must be taken, the computation
must be done by BtrPlace according to existing and new placement constraints of the
recommendation. The decision must then be acted either by submitting a new dedicated workflow
(with specific parameters) or by updating the scaling policy of the selected infrastructures.

The format in which these data will be transferred between those three components still need to be
defined as it is part of upcoming development and collaboration between ICCS, CNRS, and ActiveEon.

3.3.4 Fog Deployment & Monitoring

The Fog Deployment & Monitoring system is composed of two ProActive components (resp. ProActive
Cloud Automation and ProActive Cloud Watch).

Cloud Automation
Cloud Automation is an interface that allows to easily submit workflows and retrieve notifications
about their executions. It provides a WEB portal and a REST API that allows to submit workflows and
retrieve notifications/events. POST and GET methods are provided to submit and retrieve workflows,
here is an example of a workflow execution using the REST API (JSON format):

POST http://www.example.com/cloud-automation-service/serviceInstances

Header parameters:

SessionId: identifier of the user session

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 29

Content-Type: application/json

{
 "genericInfo":{
 "pca.service.model":"occi.infrastructure.compute",
 "pca.service.type":"infrastructure",
 "pca.service.name":"",
 "pca.service.description":"",
 "pca.action.type":"create",
 "pca.action.name":"",
 "pca.action.description":"",
 "pca.action.origin.states":"",
 "pca.action.icon":""
 },
 "variables":{}
}

Specific workflows can be then automatically submitted from custom events configured into the
ProActive Cloud Watch component described below.

Cloud Watch
The monitoring system (i.e. Cloud Watch) is able to detect complex events and trigger user-specified
actions according to predefined set of rules.

ProActive Cloud Watch contains 3 main parts: the Monitoring part, the Processing part (used for
analyzing and planning) and the Action triggering part.

It can monitor all physical metrics, such as:

● System memory, swap, cpu, load average, uptime, logins.
● Per-process memory, cpu credential info, state, arguments, environment, open files.
● File system detection and metrics.
● Network interface detection, configuration information and metrics.
● Network route and connection tables.

The rules must be specified in JSON format. The design of the Fog Deployment & Monitoring system
follows the paradigm of MVC (Model View Controller). When the rule is received in the system the
parameters in JSON format is parsed to an internal model representation. A Rule Service is
responsible for controlling and interacting with all the other internal services.

It allows to add, consult and modify the monitoring rules submitted to the platform (ProActive Cloud
Watch) through the dedicated REST API. POST and GET methods are available to submit and retrieve
rules respectively. Here is an example of a monitoring rule in JSON format:

POST http://www.example.com/cloud-automation-service/rules/

Header parameters:

SessionId: identifier of the user session

Content-Type: application/json

{

 "name": "ruleUrlMetric",

 "ruleContent": {

 "drl": "package org.ow2.proactive.cloud_watch.rules \n import java.util.*; \n import

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 30

org.ow2.proactive.cloud_watch.model.*; \nimport org.ow2.proactive.cloud_watch.service.*; \nglobal

org.ow2.proactive.cloud_watch.action.ActionExecutor actionExecutorCloudAutomationService;

\ndeclare isNodeAction \n nodeMetrics: NodeMetrics \nend \n \nrule ruleUrlMetric when\n exists

kpi : NodeMetrics(nodeUrl == \"localhost\")\n then \n Map<String, String> parameters = new

HashMap(); \n parameters.put(\"username\",\"someusername\"); \n

parameters.put(\"password\",\"somepassword\"); \n

actionExecutorCloudAutomationService.execute(parameters, \"ruleUrlMetric\", \"UrlAction\");

\nend \n"

 },

 "pollConfiguration": {

 "nodeInformations": [

 {

 "nodeURL": "localhost"

 }

],

 "kpis": [

 "sigar:Type=Cpu Total"

],

 "pollingPeriodInSeconds": "10",

 "calmPeriodInSeconds": "500"

 }

}

Here is the description of all the provided parameters:

● name - unique identifier of rule.

● ruleContent - final drl rule with all required imports and call to the special executor object

● pollConfiguration - contains info about monitoring resources

- nodeInformations: the JMX of end point

- kpis: metrics to poll

- pollingPeriodInSeconds: frequency of monitoring in seconds

- calmPeriodInSeconds: time delay for monitring after the action was triggered

Figure 19 illustrates the interactions with other PrEstoCloud components and actors. The relations
between ActiveEon components have been simplified and the REST/WEB interfaces are highlighted
for clarity.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 31

Figure 19: The interactions with other PrEstoCloud components and actors

3.3.5 Planned developments

The ActiveEon’s internal architecture (in blue) including interactions with external entities (in grey)
already exist and don’t require additional development.

Regarding the interactions with external components, the following developments are are planned for
the PrEstoCloud project:

- Improve IaaS connectors to easily acquire Docker resources on edge devices including
configuration of persistent data storage and networking redirections.

- Create custom workflows that will compose, deploy and configure specific MESOS clusters
designed to manage intensive data flow processing.

- Create and design custom workflows that will update, migrate, and reconfigure already
deployed MESOS clusters.

- Introduce a mapping between the monitoring of ActiveEon’s acquired resources and the
resources used by sub-schedulers.

- Define flexible scaling polic ies that allow to manually trigger scale up/down actions, most of
them would be specifically oriented to specific PrEstoCloud use-cases. This would require to
extend the REST API of the Resource manager.

- Additional development need to be done on the Resource manager’s REST API to receive and
update scaling policies of existing infrastructures. This is necessary to allow the Resources
Adaptation Recommender component to periodically update scaling rules based on detected
events.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 32

3.4 Contribution to the data architecture: ICCS

3.4.1 Overview

The components of the PrEstoCloud Meta-Mgmt. layer that should “directly” interact with the available
incoming events and data streams are the Situation Detection Mechanism, the Mobile Context analyzer
and the Workload Predictor. The rest two components of this architectural layer (i.e. Resources
Adaptation Recommender and Application Fragmentation & Deployment Recommender) will exploit
the outputs of these three components, mentioned above, thus we do not expect (based on the current
version of the conceptual architecture) to directly engage incoming data streams from any external
sources. We note here that the “direct” interaction to external data sources has the meaning of
subscribing to and aggregating either raw data or processed data (e.g. complex event patterns
detected) from external data sources (e.g. UAVs, VMs etc.) through a dedicated event-based
communication broker (that will be analyzed in terms of the deliverable D2.3).

Starting with the Mobile Context Analyzer which will be developed in WP3 under the responsibility of
ICCS, we envision an interaction with data streams originated by any edge device relevant to
PrEstoCloud. This corresponds to either health status data (e.g. battery level), use case specific data
(e.g. video, audio, location) or metadata on the use case specific data (e.g. video file size, throughput
etc.) acquired by edge devices like mobile phones, UAVs, other IoT devices. The latter type of data
might be produced/calculated by an internal to PrEstoCloud component, in cases that it is not
provided by the data source. The Mobile Context Analyzer component requires real time integration
with such relevant input sources, following the architectural pattern presented in section 5.1 (figure
5.4). Based on this, the component should be able to subscribe to relevant edge devices streams in
order to acquire through a dedicated communication broker all the necessary values of parameters
that are needed for inferring the current context of the devices. For example, a framework such as
netdata (https://github.com/firehol/netdata) can be installed in every edge device in order to
produce and publish health status data. Independently from the framework used in order for the
sources to publish such data to the PrEstoCloud framework, the Mobile Context Analyzer should be
able to aggregate the necessary data following a commonly agreed format that is valuable for all the
PrEstoCloud components. Such an indicative format to be used is presented in section 5.3.2 below. The
procedures for acquiring the appropriate data format for PrEstoCloud, independently on which format
was used by the data source will be part of D2.4. One last point for the Mobile Context Analyzer is
possibility to store (when it is allowed) some of the raw or processed data in an internal store
available to any component of the PrEstoCloud Meta-Mgmt. layer. We will examine the use of
Elasticsearch7 for persisting contextual data.

With respect to the Situation Detection Mechanism which will be developed in WP5 under the
responsibility of ICCS, we envision an interaction with event and data streams originated by any cloud
resource that is going to be managed by PrEstoCloud. This corresponds to either health status events
and data (e.g. CPU usage), use case specific events and data (e.g. face recognition, gunfire detection) or
metadata on the use case specific data (e.g. incoming stream throughput, quality etc.) acquired by
private or public cloud resources (physical machines, VMs or containers). As above, the use of a
framework such as netdata (https://github.com/firehol/netdata) can be installed in every VM node in
order to produce and publish valuable events. The Situation Detection Mechanism requires real time
integration with such relevant input sources, following the architectural pattern presented in section
5.1 (figure 5.4). Based on this, the component should be able to subscribe to relevant streams
originated from live VM instances in order to acquire through a dedicated communication broker all
the necessary values of parameters that are needed for detecting interesting or critical situations. The
detection of such situations will be used as input by the Resources Adaptation Recommender in order
to suggest meaningful reconfigurations of the used topology. The event and data sources in this case
might involve either system or application specific metrics. The Situation Detection should be able to
exploit the necessary events and data following a commonly agreed format that is valuable for the all
the PrEstoCloud components. Such an indicative format to be used is presented in section 5.3.2 below.

7 https://www.elastic.co/

https://github.com/firehol/netdata
https://github.com/firehol/netdata
https://www.elastic.co/

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 33

3.4.2 Data format

Data from either cloud or edge devices that run Linux can be published to PrerstoCloud by monitoring
tools like Netdata8. Netdata can collect over 1000 metrics and publish them with multiple methods
and formats. Two commonly used methods are the use of the Graphite API (which is understood by
Graphite, InfluxDB, KairosDB, Blueflood, ElasticSearch via logstash TCP input and the graphite codec,
etc) or JSON-formatted documents. Two examples of a JSON-formatted metrics published by Netdata
are the following:

// A JSON-formated event that describes the percentage of system CPU
available to the system with hostname “myhost1” at timestamp 1500892312
{"prefix":"netdata",
"hostname":"myhost1",
"chart_id":"system.cpu",
"chart_name":"system.cpu",
"chart_family":"cpu",
"chart_context":"system.cpu",
"chart_type":"system",
"units":"percentage",
"id":"guest_nice",
"name":"guest_nice",
"value":40,
"timestamp": 1500892312}

Listing 1: Example JSON message for CPU usage

// A JSON-formated event that informs about the number of active processes
of the system “myhost1” at timestamp 1500892312

{"prefix":"netdata",
"hostname":"myhost1",
"chart_id":"system.active_processes",
"chart_name":"system.active_processes",
"chart_family":"processes",
"chart_context":"system.active_processes",
"chart_type":"system",
"units":"processes",
"id":"active",
"name":"active",
"value":317,
"timestamp": 1500892312}

Listing 2: Example JSON message for active processes

There are also applications that can collect monitoring data from mobile devices. For example, the
mobile application Device Analyzer9 collects monitoring data from devices running Android 2.1 and
higher. Device Analyzer can collect over 30 types of data like the battery level and voltage, cellular
signal strength, the amount of data transferred over 3G and wifi, etc. Carat10 runs on both Android and
IOS mobile devices and collects metrics like what apps are running, the % battery remaining, memory
and CPU utilization, the unique device ID, the battery state (e.g., plugged in), and the OS version and

8 Netdata , https://github.com/firehol/netdata

9 Device Analyzer , https://deviceanalyzer.cl.cam.ac.uk/

10 Carat, http://carat.cs.berkeley.edu/

https://github.com/firehol/netdata
https://deviceanalyzer.cl.cam.ac.uk/
http://carat.cs.berkeley.edu/

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 34

phone model. An example of an event in JSON format that contains information about the status of a
mobile device could be like the following:

// A JSON-formated event that contains information about the mobile phone
with IP 170.30.21.123 at timestamp 1500845312. CPU usage is 28%,
memory usage is 56%, battery level is 51%, etc.

{
"IP":"170.30.21.123",
“cpu”:28,
“memory”:56,
“battery”:51,
“data_in”:234098,
“data_out”:7783455,
“model”:”JXX59005”,
"timestamp": 1500845312}

Listing 3: Example JSON message for mobile device status

We can perceive, in the case of a mobile device that the application developer, in order to reduce the
network load, chooses to pack more than one metrics in one event and to omit including details about
the measurement units which may be retrieved from a commonly agreed and stored on a commonly
used reference document.

Tools easily extensible with plugins like Logstash11 and Fluentd12 that can read, parse and transform
different formats of monitoring data in real-time, can be used during the data ingestion and
preprocessing stages of Mobile Context Analyzer and the Situation Detector Mechanism.

For example a logstash plugin can derive in real-time contextual information about the location of a
mobile device with the use of a GeoIP database from the IP field and add it to the received event before
sending it to the Situation Detection Mechanism. The event from the mobile device could be
transformed as follows:

{
"IP":"170.30.21.123",
“geoip.continent_code”:”EU”,
“geoip.coordinates”:[9,51],
“cpu”:28,
“memory”:5609213,
“battery”:51,
“data_in”:234098,
“data_out”:7783455,
“model”:”JXX59005”,
"timestamp": 1500845312}

Listing 4: Enhanced JSON message for a mobile device

In order to have a common understanding of each data source it is necessary to describe it with a
reference document that will contain information about the data format, the metadata, the semantics
of each field and its possible values. Fields like the parameter name, the value, the timestamp that the

11 Logstash, https://www.elastic.co/products/logstash

12 Fluentd, http://www.fluentd.org/

https://www.elastic.co/products/logstash
http://www.fluentd.org/

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 35

value refers to, and a unique id that distinguishes the source of the data are necessary and cannot be
omitted.

An example reference document that describes some important fields of an event may include the
following:

Key Type Description

IP A string representing
an IP Address

The IP address of the
mobile phone

contintent_code String The code that
corresponds to the
continent of

memory Integer Free memory of mobile
phone (in bytes)

Cpu Real CPU utilization in
percent (0-100).

Of course this reference document might also include additional aspects per event parameter that will
assist on using an even more compact event format. For example the “data_in”:234098 in the example
event payload of listing 4, should be accompanied by the measurement unit (e.g. MBs). But if there is a
commonly agreed reference document that includes measurement units (per parameter) this
information doesn’t have to be included in the event payload.

3.5 Contribution to the data architecture: CNRS

3.5.1 BtrPlace

BtrPlace shall be used by the meta-management layer to place tasks under constraints (e.g. hardware
affinity, colocation of tasks on the same hardware or site, etc.).

In order to be able to find a viable placement for the jobs, BtrPlace relies on the following elements:

 a model of the hosting platform. This model contains the number of nodes on which tasks can
be placed (e.g. physical servers), and the current status of usage of their primary resources
(e.g. CPU use or pinning, physical RAM use);

 a set of satisfaction constraints that impose restrictions on the placement. Popular examples of
such constraints are colocation of VMs (e.g. on the same physical server), or spreading of VMs
(e.g. on different physical servers). When used in combination over multi-tier applications,
they achieve a global high-availability of the system. The constraints can also apply on the
infrastructure itself, e.g. enforcing a specific number of nodes to be online (reducing energy
consumption), or some specific nodes to be offline (e.g. for maintenance), etc.;

 one optimization constraint, which is a special constraint that can be minimized or maximized.
Popular examples are “use as few nodes as possible”, or “minimize the mean time to repair”, i.e.
the amount of time that VMs will be unavailable during reconfiguration.

Given these elements and a queue of jobs to place, BtrPlace will produce a reconfiguration plan, i.e. a
scheduled set of transition actions that either starts, migrates, or stops VMs, or boot or shutdown
physical hardware. Once the reconfiguration plan has been applied (e.g. by the cloud manager
software), the tasks placement has been optimized and meets all the specified constraints.

These elements can be given to BtrPlace using either a Java API, a JSON message, or a custom
specification language, which is very descriptive and script-like. Documentation for these elements are
available on the project website: http://www.btrplace.org/. An example of the specification language
is shown in Listing 5: Example of the BtrPlace Specification Language (Hermenier, Lawall, & Muller,
2013)., where a data center with 12 servers is modeled. These servers are divided among 3 racks. A
queue of 10 VMs must be placed. The 7 first VMs are based on the “small” VM template (which maps to

http://www.btrplace.org/

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 36

a specific amount of CPU and RAM), can be cloned (i.e. can restarted without saving their state), and
take 5 seconds to boot or stop. Similarly, the two other VMs are large VMs. The three first VMs are
assigned to the first task, VMs 4-7 are assigned to the second task, and VMs 8-10 to the third task. Then
the loop specifies that each VMs, within each task, must be spread, i.e. must be placed on distinct VMs
from one another. The among constraint additionally forces the VMs for T3 to be located within the
same server rack. Finally, the last part of the script instantiates the BtrPlace VM itself, which is set to
be run on the first server, and

$servers = @srv[1..12];
$racks = {@srv[1..4], @srv[5..8], @srv[9..12]};

VM[1..7]: small<clone, boot=5, halt=5>;
VM[8..10]: large<clone, boot=60, halt=10>;
$T1 = {VM1, VM2, VM3};
$T2 = VM[4..7];
$T3 = VM[8..10];
for $t in $t[1..3] {
 spread($t);
}
among($T3, $racks);

vmBtrPlace: large;
fence(vmBtrPlace, @srv1);
lonely(vmBtrPlace);
ban($clients, @srv5);

Listing 5: Example of the BtrPlace Specification Language (Hermenier, Lawall, & Muller, 2013).

BtrPlace as part of the Meta-management layer shall be periodically requested to issue optimal
placement solutions for jobs over the appropriate cloud or edge resources. In both cases of initial
placement and placement re-configuration, the Meta-management layer will drive the decision process
that will also engage BtrPlace. In the first case any placement constraints or preferences will be
considered while in case of re-configurations (functional requirement #FR-39 in D2.2), the time and
the reason for the required adaptations will be detected by the components of the same layer before
invoking BtrPlace with the appropriate placement issue parameters (e.g. how many jobs to be re-
configured, how many VM instances available etc.)

3.5.2 Inter-Site Network Virtualization

The Inter-Site Network Virtualization component will be responsible for creating the necessary
network overlay between the multiple sites elected to execute tasks within the workload. Using this
overlay, any node will be able to talk (i.e. exchange data) in an optimized and secure way with any
other node that is part of the workflow.

The overlay network will be originally deployed alongside the first instantiation of the workflow by
the Autonomic Resource Manager (see Section 5.3). The necessary steps for the creation of the overlay
will be integrated into the Autonomic Resource Manager as a workflow of its own. The elements of this
workflow will contain:

 A blueprint, or a template, for a virtual machine that will be instantiated alongside the
workload infrastructure on each site. This virtual machine will serve as a network gateway
device for all nodes that will deployed within the sites. These gateways will connect to each
other, so as to provide the overlay.

 A function to receive an IP numbering plan. Because the IP network will be shared among
multiple sites, it is necessary to ensure that there will not be any duplicate IP address over any
node within any site. Consequently, the component shall be responsible for assigning either
the direct (internal) IP address of the nodes, or establish a numbering plan that the Autonomic
Resource Manager can rely on to avoid having duplicates. To provide maximum adaptability

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 37

this numbering plan should take into consideration constraints, such as IP subnets or
addresses to avoid using, or range restriction.

On top of the initial deployment, the Inter-Site Network Virtualization component shall be required to
establish new links, or destroy existing ones, depending on the need, when the infrastructure is
adjusted during the execution of the task. At this point, if a new site is required, the gateway virtual
machine shall be deployed, and the new site should be added to the numbering plan.

During the execution of the workload, the Inter-Site Network Virtualization component will be able to
provide data related to the local environment of each site back to the Meta-Management Layer. This
data will reflect information about the networking environment and usage:

 Available bandwidth: each site will be able to estimate the available bandwidth for
communication with each other site. This estimation is based on active measurements
campaigns launched between each site’s gateway virtual machine. Because this estimation can
be quite costly in terms of network transfers, which is problematic in the context of public
clouds because users are charged per unit of data transferred, two measurement testbeds will
be available. One will measure the available bandwidth using packet dispersion technique. This
technique is advantageous because it uses statistical inference to estimate the available
bandwidth, while transferring a low amount of data. However, the algorithms are quite
sensitive to perturbations, which may lead to imprecise estimation. This kind of algorithm can
be run in a loop, e.g., every 10 minutes, and return the last up-to-date information to the meta
management layer. The other technique is well-known to end users, as it is the basis behind
the popular SpeedTest website. Basically, it amounts to transferring data between two points,
faster and faster, until reaching the maximum speed. While the resulting estimation is quite
good (although usually over estimated, but with an accuracy of 90%), the amount of data
transferred between the two points is at least in the order of hundreds of megabytes, reaching
gigabytes on faster links. This testbed will be available for trigger between two sites (e.g. by
the devops) from the platform so as to provide better insight in the deployment/redeployment
phases, but could lead to high monetary operational costs if used without caution.

 Available capacity: each site will be able to estimate the available capacity. While the
bandwidth reflects the available (instantaneous) speed between two points, the capacity
estimates the maximal achievable bandwidth, without cross traffic, or waiting queues, etc. The
value of the capacity is crucial when considering the performances (i.e. the bandwidth) of a
network. A low bandwidth may be a transient event (e.g. due to cross traffic), or due to a low-
capacity link. Given both the bandwidth and the capacity, it is easier to detect possible
bottlenecks. The estimation of the capacity is possible with statistic estimation based on packet
dispersion measurements. The measurement campaigns tend to require longer run times (tens
of minutes), but generate low traffic (tens of megabytes).

 Instantaneous and cumulative inbound and outbound traffic speed and volume: these values
return the instantaneous (i.e. current, or over a short period of time) transfer rate and volumes
(both inbound and outbound, to and from each other site and the public Internet), as well as
the corresponding average transfer speed and total transferred volumes since deployment at
the local site. These values are collected with passive measurements, on the gateway virtual
machines.

Armed with these metrics, the meta-management layer will be able to take better
placement/deployment decisions.

3.6 Contribution to the data architecture: Nissatech

3.6.1 Overview

Figure 20 shows a high-level view on the communication between the data sources and the relevant
processing pipeline. The architecture follows the Remote integration architecture as described in
Section 5.2. In the case that the data source sends the data directly to the broker, our system can be
adapted to the Real-time integration architecture.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 38

Figure 20: Data integration architecture

Below we include our responses regarding to the following reviewers’ recommendation:

Comment: “Figure 20 in Section 6.4.1 is not explained. What is the role of each component
(Hbase, Hadoop…)?”

Hadoop: Apache Hadoop is a framework that allows for the distributed processing of large data sets
across clusters of computers using simple programming models. It is designed to scale up from single
servers to thousands of machines, each offering local computation and storage. The most important
components of Apache Hadoop are Hadoop MapReduce, which enables parallel processing of large
data sets and HDFS (Hadoop Distributed File System), which is a distributed file system that provides
high-throughput access to application data. We make a difference between Hadoop and Hadoop 2,
better known as Hadoop YARN, which is a framework for job scheduling and cluster resource

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 39

management, allowing applications other than Hadoop to execute on the same cluster. Hadoop has a
master/slave architecture for both storage and processing. In a Hadoop cluster we identify:

 Name Node – HDFS master which maintains the name system (directories and files) and
manages the blocks present on the Data Nodes;

 Secondary Name Node – responsible for performing periodic checkpoints and is a replacement
for Name Node in case of its failure;

 Data Node – HDFS slaves which are deployed on each machine and provide the actual storage.
They are responsible for serving read and write requests;

 Job Tracker – MapReduce master which manages the jobs and resources in the cluster (Task
Trackers). Job Tracker tries to schedule each map as close to the actual data being processed;

 Task Tracker – MapReduce slaves deployed on each machine of the cluster. They are
responsible for running map and reduce tasks as instructed by the Job Tracker.

HBase: Apache HBase is the Hadoop database, a distributed, scalable, big data store, modeled after
Google’s Bigtable, allowing random read/write on top of HDFS. It provides linear and modular
scalability and strictly consistent reads and writes. Process of table sharding is automatic and
configurable, as well as failover mechanism of RegionServers. It is very flexible, as each row might
have different structure (different number of columns) and no schema is needed. HDFS is used for
durable and reliable storage, distributed coordination is implemented using Apache Zookeeper and a
built-in MapReduce support exists for running MapReduce jobs. HBase cluster consists of a Master and
a number of Region servers. HBase master coordinates the HBase cluster and handles administrative
operations (such as creation, deletion and modification of tables). Region server contains a number of
Regions, where a Region represents a part of table’s data. When a region is full (exceeds a limit), a split
is triggered, and two regions are created. Being a NoSQL database, other solutions were developed to
allow usage of SQL for querying data stored in HBase. One such example is Apache Pheonix, which
compiles SQL query into a series of HBase scans and orchestrates running of those scans to produce
regular JDBC result sets. HBase clients exist in different languages, such as Java, Python and Scala.

Oozie: Oozie is a workflow scheduler for Apache Hadoop jobs. Oozie workflows are defined as Directed
Acyclical Graphs (DAGs) of actions, which means that there should be no loops in the workflow. Oozie
Coordinator allows to schedule execution of Oozie Workflows based on time (frequency) or data
availability. Client interacts with Oozie HTTP service which allows him to submit workflows which can
be executed immediately or later. Workflows are defined using XML. Nodes in Oozie workflow can
consist of action nodes (such as map-reduce jobs, java, pig jobs and shell scripts) and control nodes
(such as start, end, decision, fork and join).

Kafka: Apache Kafka is a distributed stream processing platform capable of handling trillions of events
a day. Kafka is used for building real-time data pipelines and streaming applications. It is horizontally
scalable, fault-tolerant and incredibly fast. Its storage layer is essentially a massively scalable pub/sub
message queue designed as a distributed transaction log. Those messages are persisted on disk and
replicated within the cluster to prevent data loss. A single Kafka cluster can server as the central data
backbone for a large organization because each broken can handle terabytes of messages without
performance impact. It maintains feeds of messages in categories called topics. Processes which push
messages to Kafka are called producers, while processes that subscribe to a topic and process the feed
of messages are called consumers. Kafka is run as a cluster containing one or more servers, each called
a broker. Topics are broken up into ordered commit logs called partitions. Each message in a partition
has a sequential called an offset. Ordering of messages within a partition is guaranteed. Topics are
replicated, where a unit of replication is the partition. Kafka is written in Scala and Java.

In the following text, we describe briefly the most important elements of the architecture.

1. Local Storage

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 40

This is local database where the (new) data from the data source is stored.
In the case that it is not allowed to get a trigger when new data is stored, another component is doing
such a notification (the box colored in gray).

2. Use Case Remote Client
This client is implemented as service with endpoint for requesting processing of new data. When it
receives processing request, Remote Client queries Local Storage using serial number in order to
retrieve measurement data. After data is retrieved, it adjusts data format before delegating the request
to Local Client. After getting an answer from Local Client, it returns processing result to it's client.

3. Use Case Local Client
This client is also implemented as a service with an endpoint for processing requests. As mentioned, it
receives requests from a Remote Client. The request contains new data and some contextual data (like
the model number). This context can be used for receiving more relevant information for the
processing task. Local Client also contains endpoints for adding and removing mappings from this
database.

4. Contextualization
Contains pairs of contextID-dataID. It can be altered using Local Client endpoints.

There are two basic steps in the analytics: training and detection.

 Training procedure - Training procedure had to be extended to support analysis which
includes contextual parameters. Specific steps were needed to determine the influence of
contextual parameters and to emphasize it.

 Real time anomaly detection - Anomaly detection is the most common type of processing, but
any other learning method can be used.

3.6.2 Data format

We provide an example (JSON) in order to illustrate how data should be described:

"header": {
 "when": “1/1/2001”
 "where": "country",
 "who": "author",
 "desc": "A part"
 },
 "parameters": [{
 "name": "Power",
 "values": [{
 "timestamp": "12/12/2012",
 "value": 1.0
 }, {
 "timestamp": "12/12/2013",
 "value": 2.0
 }, {
 "timestamp": "12/12/2014",
 "value": 3.0
 }]
 }, {
 "name": "Current",
 "values": [{
 "timestamp": "12/12/2015",
 "value": 4.0
 }, {
 "timestamp": "12/12/2016",
 "value": 5.0
 }]
 }]
}

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 41

We assume that Local client will produce this format of data (to be sent to the Remote Client).

There can be different formats (e.g. more compact) for describing input data, as following:

"header": {

 "when": “1/1/2001”
 "where": "country",
 "who": "author",
 "desc": "A part"
 },

 "parameters": [{

 "name": "Current",

 "values": [4.0, 5.0, 6.0]

 }, {

 "name": "Power",

 "values": [1.0, 2.0]

 }]

3.7 Contribution to the data architecture: Ubitech

For providing a security enforcement overlay layer that can be used in cloud and edge setups,
PrEstoCloud introduces a mechanism that handles protection on the network infrastructure level. The
Security Enforcement Mechanism provides the appropriate business logic that is required in order to
configure programmable resources such as SDN switches, Firewall, Intrusion Detection Systems(IDS),
Intrusion Prevention Systems (IPS) following the Network Function Virtualization (NFV) model. In
order to achieve this, the Security Enforcement Mechanism should be aware of the actual
configuration and status of the network setup of the use cases.

As with the PrEstoCloud Meta-Management layer, for the components of the Security Enforcement
Mechanism we do not expect to directly consume incoming data streams from any external sources
provided by the use cases, in the sense of subscribing to and aggregating data (raw or processed) from
external data sources (e.g. cameras, UAVs, VMs etc.). Based on the current, version of the conceptual
architecture, the Security Enforcement Mechanism is expected to interact directly with components
like the Situation Detection Mechanism of the Meta-Management layer and the Autonomic Resource
Manager component.

The business logic of security configuration per each programmable resource cannot be generalized
since each component entails a diverse ‘northbound’ API. However, the Security Enforcement
Mechanism will interact with all the programmable components through an adaptation layer.
However, already in this document the vision of how the data from external (use case) data sources
will be collected, analyzed and stored has been provided, so we can envision how the Security
Enforcement Mechanism will be able to access the required data from other components.

The integration regarding the use case infrastructure is depending on the way that the aforementioned
components are communicating with the use case infrastructure in order to collect the needed input
data. In the scope of integration of Security Enforcement with the components of the platform, the
preferred way is to follow the local integration architecture paradigm by deploying the mechanism
artefacts in the same infrastructure as the components, and when this is not possible to use the real
integration paradigm in order to collect the required information using pub-sub mechanism. However,
these details will be decided when the conceptual architecture will be finalized.

Based on this, the Security Enforcement Mechanism that will be able to access the required data of
detecting interesting or critical situations as input in order to process or suggest to the user to make
changes using SDN configurations and enhancements using NFV. The data format that will be used

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 42

should be commonly agreed format with the Situation Detection Mechanism and the Autonomic
Resource Manager.

For the Autonomic Resource Manager, there is already REST API described along with JSON examples
(see Section 5.3). The Autonomic Resource manager component will be used by the Security
Enforcement Mechanism in order to enhance the network security by deploying on demand VMs that
provide firewalling, IDS and IPS functionalities, on the public or private cloud infrastructures’ of the
use cases. For this reason, the Security Enforcement Mechanism shall communicate with Autonomic
Resource manager in order to provide the required configurations about the VM to be deployed, using
the REST interface that has been briefly presented in table in Section 5.3.2. The configuration
parameters relate to the security goals that are desired.

The data input required by the security enforcement mechanism can be retrieved from Situation
Detector Mechanism using a REST endpoint or a pub-sub mechanism. This information is used mostly
to inform the user about interesting situations and if possible, this information will be processed in
order to suggest possible changes on the network configuration using SDN and NFV models. The
information that will be retrieved by both of these components will be stored in a relational database
preserved for the Security Enforcement Mechanism needs.

It has to be stated that as the architecture is concretized and the actual PrEstoCloud is constructed, the
information of this component may be subjected to changes. Furthermore, it will be further examined
if the Cloud Automation and Cloud Watch components of Fog Deployment & Monitoring system could
also provide valuable information that can be accessed by The Security Enforcement mechanism.

3.8 Contribution to the data architecture: JSI

The "Mobile offload processing" microservice will combine real-time local, remote edge node, and
cloud resource and power usage metrics information (as described in the "Mobile context analyser"
microservice description) and a semantic model of the computational process of the application, in
order to provide the Autonomic Resources Manager with options for offloading portions of application
processing from RTPN to the extreme edge of the network.

The microservice will not analyze the raw user plane data stream, and as such does not need generic
data adaptation. Any application data that will be either acquired locally or transferred from a
neighbouring edge node or the RTPN will be encapsulated in an application specific format, with no
modification.

In order to seamlessly handle the imperfect availability of edge processing resources, all
communication between the microservice and edge node monitoring probes will be asynchronous and
specific to the type of the processing node (e.g. a user interface device in a truck, a drone, etc.). To
support the communication, a message queue will be needed to connect the microservice and edge
nodes, but disconnections and lost messages should be tolerated.

The CVS Mobile specific component for driving behaviour and situation monitoring will run partially
on the edge nodes and partially in the cloud. For the on-demand processing of data in the RTPN, data
will be transferred as a set of application specific packet data units through the message queue, and
will not need adaptation.

Depending on realized overall system latencies, a HTTP REST transport mechanism, initiated by the
edge node, might be employed to further reduce the requirements on transport reliability. Storage of
intermediate results, such as models, is envisioned to be performed locally at the location of the RTPN
portion of the microservice, where additional analytics will also occur.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 43

3.9 Contribution to the data architecture: Software AG

3.9.1 Supported integration scenario and data sources

Real-time integration of data sources as described in the architecture introduction of this document
are supported by Software AG’s event processing offering “Apama”. While real-time event streaming is
the core competence of Apama, external static data stores can also be connected. Connectivity plugins
provide a simple abstraction with high performance for in-process connectivity to external data
sources.
A runtime engine called the Apama Correlator consumes the data sources, executes the desired
application by looking for patterns and delivers insights and potential actions in real-time.
The stream processor which is the processing heart within the Correlator organizes windows of events
and orchestrates the execution of real-time analytics over these event windows. Once an event pattern
is identified, the initiating Apama application is notified. Applications can be provided in Standard Java
or via the Apama Event Programming Language (EPL), a powerful and easy-to-use description
language which has been designed around the requirements of defining and acting on event patterns.

Scalability
Correlators execute applications as modular compositions that are segmented into event monitoring,
analysis and action stages, logically related but independent parts. This segmentation is particularly
valuable in addressing the requirement to allow thousands of instances operating simultaneously. In
order to achieve this, Apama supports the execution of multiple parallel executing contexts, where
each context can be considered as a lightweight execution container. Each container can process any
number of Apama applications which allows Apama to scale easily.

Connecting to Apama

Figure 21: Apama connectivity overview

Apama connectivity via JMS

The Java Message Service (JMS) provides a common programming model for asynchronously sending
events and data across enterprise messaging systems. JMS supports two models, "publish-and-
subscribe" for one-to-many message delivery and "point-to-point" for one-to-one message delivery.
Apama's correlator-integrated messaging for JMS supports both these models. When configured to use

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 44

correlator-integrated messaging for JMS, Apama applications map incoming JMS messages to Apama
events and map outgoing Apama events to JMS messages.

The connectivity examples 1-3 given in Appendix 1 - Apama connectivity examples show how to parse
a JMS message whose body contains an XML document and map it to an Apama event called MyEvent:

 Example 1 shows a JMS message whose body contains an XML document.

 Example 2 shows the definition of an Apama MyEvent.

 Example 3 shows how the MyEvent would be mapped to an Apama event string.

3.9.2 Apama’s Integration Framework (IAF)

The integration framework is a middleware-independent and protocol-neutral adapter tailoring
framework designed to provide for the easy and straightforward creation of software adapters to
interface Apama with middleware buses and other message sources. It provides facilities to generate
adapters that can communicate with third-party messaging systems, extract and decode self-
describing or schema-formatted messages, and flexibly transform them into Apama events. Vice-versa,
Apama events can be transformed into the proprietary representations required by third-party
messaging systems. It provides highly configurable and maintainable interfaces and semantic data
transformations. An adapter generated with the IAF can be re-configured and upgraded at will, and in
many cases, without having to restart it. Its dynamic plug-in loading mechanism allows a user to
customize it to communicate with proprietary middleware buses and decode message formats.
All events, regardless of source, are converted to the internal format, thus enabling Apama to natively
support correlations that span disparate external data formats.
The main Apama adapters of the integration framework are:

1.1 Database Connector

With the Apama Database Connector (ADBC), Apama applications can store and retrieve data in
standard database formats. Data can be retrieved using the ADBCHelper API or the ADBC Event API to
execute general database queries or data can be retrieved for playback purposes using the Apama Data
Player.
The ADBCHelper API contains the basic features you need for most common use cases, such as opening
and closing databases and executing SQL commands and queries.
The ADBC Event API contains features for more complex use cases. For example, in addition to
opening and closing databases, it contains actions for discovering what data sources and databases are
available.
ADBC adapters are available for three different data sources:

(1) JDBC Adapter (Apama Database Connector for JDBC)

o Apama provides JDBC database drivers for DB2, Microsoft SQL Server an Oracle.
(2) ODBC Adapter (Apama Database Connector for ODBC)

o Own ODBC drivers are requested in order to use ODBC. The use of JDBC rather than
ODBC is recommended.

(3) Sim File Adapter (Apama Database Connector for Sim Files)

o An Apama Sim data source is a file with data stored in a comma-delimited format with
a .sim file extension. The Apama ADBC adapter can read .sim files but it does not store
data in that format.

An ADBC example is given in Appendix 1 - Apama connectivity examples - see connectivity example 4.

1.2 Web Services Client Adapter

The Apama Web Services Client adapter is a SOAP-based adapter that allows Apama applications to
invoke Web services. You can add multiple instances of the Web Services Client adapter to an Apama
project.
Note that Apama applications only invoke Web Service operations in the consume use case; it is not
possible to expose actions in Apama applications as Web Services operations.

1.3 File Adapter

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 45

The Apama File adapter uses the Apama Integration Adapter Framework (IAF) to read information
from text files and write information to text files by means of Apama events. This lets you read files
line-by-line from external applications or write formatted data as required by external applications.
The File adapter can read from multiple files at the same time. Send an OpenFileForReading event for
each file you want the File adapter to read. This involves emitting an event to the channel specified in
the adapter's configuration file, typically FILE, for example (see connectivity example 5 in Appendix 1 -

Apama connectivity examples).

3.9.3 Connectivity Plug-Ins

Connectivity plug-ins allows adapters to be run in the same process as the correlator, providing a
tightly coupled mechanism to send or receive events from external systems. A simple configuration file
specifies the plug-ins used and provides powerful configuration data for plug-ins to use.
A number of connectivity plug-ins can be used together to form a chain of plug-ins in order to separate
transports from mapping or decoding functionality.
Sample plug-ins provided include:

• JSON™ codec to convert Apama events to/ from JSON form

• A simple HTTP client
• A simple HTTP server

• Classifiers for identifying the type of events via configuration

• Mapper to provide rule-based transformation of event fields

An example configuration can be found in connectivity example 6 in Appendix 1 - Apama connectivity
examples.

The JSON codec does bidirectional translation between JSON documents in the payload of a message
on the transport side and an object in the payload of a message on the host side. The JSON document
will be stored as a string in the message payload, and the corresponding object will be of a type that
the apama.eventMap host plug-in can understand.

See connectivity example 7 in Appendix 1 - Apama connectivity examples for a JSON document.

This java.util.Map (Java) or map_t (C++) maps a string to an integer for one map entry and a string to a
list of strings for the other entry. When the apama.eventMap host plug-in sees an object like this, it will
be able to map it to/from an EPL (The Apama Event Processing Language (EPL) is an event-based
scripting language that is an interface to the correlator) event type as shown in connectivity example 8
in Appendix 1 - Apama connectivity examples.

Connectivity plug-ins can be written in Java or C++, and run inside the correlator process to allow
messages to be sent and received to/from external systems. Individual plug-ins are combined together
to form chains that define the path of a message, with the correlator host process at one end and an
external system or library at the other, and with an optional sequence of message mapping
transformations between them.
 A chain is a combination of plug-ins. Every chain consists of the following:

 Codec plug-in. Optionally, one or more codec plug-ins are responsible for applying
transformations to the messages (for example, JSONCodec in the above example) to prepare
them for the next plug-in in the chain.

 Transport plug-in. One transport plug-in is responsible for sending/receiving messages
to/from an external system (for example, httpClient in the above example).

 Host plug-in. One built-in host plug-in is responsible for sending/receiving messages to/from
the correlator process that is hosting the chain. These are built-in plug-ins (which do not need
to be specified in the connectivityPlugins) which the correlator supports. Host plug-ins
determine in which format events are passed in and out of the correlator. Thus, a chain should
specify a host plug-in that is compatible with the next codec or transport element in the chain.
Host plug-ins can also specify on which channel the chain receives events from the correlator,
and can specify a default channel to send events in to the correlator (for example,
apama.eventMap in the above example).

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 46

Figure 22: Example of the HTTP Chain Invoking External Services

Apama connectivity via MQTT Client

MQTT is a publish/subscribe-based "lightweight" message protocol designed for communication
between constrained devices, for example, devices with limited network bandwidth or unreliable
networks. Apama provides connectivity plug-in, the MQTT transport, which can be used to
communicate between the correlator and an MQTT broker, where the MQTT broker uses topics to
filter the messages. MQTT messages can be transformed to and from Apama events by listening for
and sending events to channels such as mqtt:topic. The MQTT transport automatically reconnects in
case of a connection failure. The transport will retry sending any messages sent after the connection
has been lost when reconnection has succeeded. You configure the MQTT connectivity plug-in by
editing the files that come with the MQTT bundle. The properties file defines the substitution variables
that are used in the YAML configuration file which also comes with the bundle.

Using MQTT connectivity from EPL

The MQTT transport can either subscribe to or send to a particular topic, depending on whether your
EPL is subscribing to or sending to a particular channel.
In EPL, in order to receive an MQTT message, you just need to subscribe to an MQTT topic with the
appropriate prefix. For an example see Connectivity example 9 in Appendix 1 - Apama connectivity
examples.

To send an Apama event to the MQTT broker, you just need to use the send...to statement to deliver the
event to the MQTT topic. For an example see Connectivity example 10 in Appendix 1 - Apama
connectivity examples.

Apama connectivity via HTTP Client

The HTTP client is a transport for use in connectivity plug-ins which can connect to external services
over HTTP/REST, perform requests on them and return the response as an event. For each service
(host and port combination) that you want to connect to, you must create a new instance of a
connectivity chain in your configuration file. To use the service, you send events to that chain, where
the events are correctly mapped. The response is sent back by the same chain instance, with the
configured mapping rules. Persistent connections to the server are used for multiple requests if this is
supported by the service. Connection details to the service are part of the configuration of the
transport in the configuration file. Details of the individual requests are configured through the events
sent to the chain.

The HTTP client accepts requests with metadata fields indicating how to make the request and a
binary payload to be submitted as the body of the request. A response contains a binary payload which
is the body of the response and further metadata fields describing the response. For the responses to
be useful to EPL, they must be converted into the format expected by Apama. This is done using the
codecs.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 47

The HTTP client is designed to talk to REST services and supports GET, POST, PUT and DELETE
operations.

See connectivity example 11 and 12 in Appendix 1 - Apama connectivity examples for a simple REST
service with a single URL. The connectivity example 11 shows the events in EPL and the connectivity
example 12 shows the service.

Each PUT request contains a request string which performs an action on the server and returns
another string in the response.

Apama connectivity via Java Client

If your environment needs to interface programmatically with the correlator, Apama provides a suite
of Client Software Development Kits. These allow you to write custom software applications that
interface existing enterprise applications, event sources and event clients to the correlator. These
custom applications can be written in Java or .NET. The following interface layers are available:

EngineClient API

The Apama EngineClient API is available in the following languages: Java and .NET.
The EngineClient API provides capabilities to interact with an Apama engine, typically a correlator. It
provides the ability to send and receive events, inject and delete EPL entities, connect Apama engines
together, inspect what was injected into the correlator and monitor the status of the correlator. The
Connectivity example 13 in Appendix 1 - Apama connectivity examples shows a Simple Java program
to demonstrate interfacing with the Apama Correlator through the Java engine client API.

EventService API

The Apama EventService API is layered on top of the EngineClient API. The EventService API allows
client applications to focus on events and channels.

The EventService API also provides an advanced mechanism to emulate request-response
functionality. The EventServiceChannel object provides both synchronous and asynchronous
mechanisms for request-response. With the synchronous mechanism, the client sends an event to the
correlator and waits for the matching response event. With the asynchronous mechanism, the client
sends an event to the correlator, and callback is invoked when a matching response event is received.

Apama connectivity via Broker

Apama version 9.12 and above can be used in combination with any broker which supports the
following protocols and APIs:

 HTTP 1.1
 XML 1.0 ,XSLT, XML Namespaces, XPATH
 JAAS
 JDBC
 JMS
 REST
 SOAP 1.1
 WSDL 1.1
 PMML 4.2
 Fast 1.1-1.2
 WS-Secuirty 1.0
 WS Adressing FIX 4.1-4.4;5.0.

Apama version 10.0 in addition to the above supports:

 MQTT
 Kafka

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 48

 (HTTP (Client))
 TLS 1.0 and above.

All connectivity examples are given in Appendix 1 - Apama connectivity examples.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 49

4. Data in use cases

4.1 Introduction

In this section we provide detailed information about the existing methods for accessing and storing
data in each of the use cases.

The goal is to understand how the data, which is available in use cases, can be gathered and stored for
the further processing.

There are two main issues clarified:

a) how this data can be accessed in real-time
a. interface to access the data (method)
b. format of representing data (e.g. JSON)

b) how this data will be stored (DB schema)

4.2 Wide Area Video Surveillance Use Case – ADITESS

4.2.1 Available data

This subsection contains basic information about the data which is available in this use case, partially
described in D7.1 and D7.10.

Available datasets include audio files as part of a previous research. Video datasets will be produced
during the implementation of the pilot testing. At the same time, we expect additional datasets based
on OpenStack related log files. More information can be found in the relevant deliverable D7.10.

Under this scenario the pilot will produce a large number of video and audio files, as part of the testing
data. We foresee that a subset of these video and audio files can be used by other researchers as data
feeds, especially in the research area of video and audio analytics. Other useful data could be network
and computing related datasets, as part of OpenStack implementation in support of the scenario.

Figure 23: Types of data sources and processing (ADITESS)

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 50

In the video surveillance use-case, data will be collected from the sensors, and provided to the
Embedded System (ES) or Ground Control Station (GCS) for the initial processing (Layer 1). Results of
the processing, as well as raw data will be shared to the Regional Processing Units (RPU) (Layer 2) of
the infrastructure. This layer will provide more computational and storage capabilities. Inter-
exchanging of data between multiple RPUs is also available in the system. Furthermore, Public Cloud
(e.g. OpenStack) is part of the infrastructure and can provide resources for further processing and
storage.

Details about the data, including the source, the sharing level, as well as the availability are included
below.

Type/Name of
Data/parameter

Data Description

Sharing level

[P – Public]

[C – Consortium]

[R – Restricted]

/Availability

[H – Historical
data Exist]
[F – Future]

Videos Files
(CCTV)

Video files that will be produced as part of the pilot implementation.
C/F

Audio files
(CCTV)

Audio files that will be produced as part of the pilot implementation.
P/F

OpenStack
Monitoring files

Monitoring files provided by the REST APIs and/or logging
mechanisms of the various components/services of OpenStack and
produced during the implementation of the pilot scenarios.

C/F

Video Files
(UAV)

Video files that will be produced by the usage of Mini-UAV systems.
Also, existing video footage from previous flightscan be used as
historical data

C/H,F

Mini-UAV Sensor
Metadata (Video
Embedded)

Video stream includes a set of metadata about the position of Mini-
UAV, target location, etc. These data are available (embedded, KLV
protocol) for each frame of the stream.

C/H,F

Mini-UAV Sensor
Metadata

Metadata about the sensor, Mini-UAV position, target corners
coordinates, field of view, etc. These data are available during the
flight from a different (than video) stream of data. The frequency of
data is about 100ms.

C/H,F

Thermal Image
(and/or
hyperspectral)

Thermal (and/or hyperspectral) video streams are available.

C/F

Mini-UAV
Monitoring data

Status of the Mini-UAV (battery, telemetry, etc.) can be delivered in
real-time from the aerial platform to the ground.

C/F

Table 1: Types of data, sharing level and availability (ADITESS)

In the next subsections we describe the ways how the data from external data sources can be accessed
and stored.

4.2.2 Data access

In this section we provide details for accessing the data relevant for this use case. We distinguish
between the possibilities:

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 51

(1) accessing the data in real-time (streaming interface)

(2) accessing data from the storage (DB interface)

There are two main sources:

1. CCTV

2. UAV

Relevant data-streams are:

• Videostream

• Audiostream

• Videostream (incl. metadata)

• Metadata

• Thermal videostream

Monitoring data:

• OpenStack Monitoring files

• ini-UAV Monitoring data

Following table summarizes the main characteristics of the available data sources.

Table 2: Details of the data access (ADITESS)

Type/Name of
Data/parameter

Data Description

Interfaces/ Format

Type

stream /

batch,
frequency

Storage

(if / how the data is /
will be stored)

Embedded System
related datasets

CPU utilisation

RAM utilisation

Network (bytes sent)

Disc storage

REST API (JSON,
provided in Table 1)

Stream Yes if needed

Videos Files (CCTV)
Video files that will be
produced as part of the
pilot implementation.

MKV Container

(Embedded will
send the file
through API)

Stream
(streaming is
activated upon
the detection of
a security
threat)

mongoDB

or (File storage
supported by
OpenStack/Swift)

Audio files (CCTV)
Audio files that will be
produced as part of the
pilot implementation.

MKV Container

(Embedded will
send the file
through API)

Not streamed.
Local
processing at
the embedded
system. (It is
not allowed to
record and
store audio files
according to EC
data privacy
regulations)

OpenStack Monitoring
files

Monitoring files
provided by the REST
APIs and/or logging
mechanisms of the
various
components/services

Telemetry
information
collected by
Ceilometer and
provided through
the REST API of

REST API calls
can be used in
decided
frequency (e.g.:
30s)

Data stored by
OpenStack should be
sufficient.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 52

of OpenStack and
produced during the
implementation of the
pilot scenarios.

Ceilometer or a
service that pre-
processes these
data (e.g.: Gnocchi,
Aodh or Monasca)

Video Files (UAV)

Video files that will be
produced by the usage
of Mini-UAV systems.
Also, existing video
footage from previous
flightscan be used as
historical data

RTSP Video Server
link (live stream
during the flight)

Streaming

/RTSP protocol

Local storage at ground
Control Station (file
system). They can also
be stored (moved) to
any database
(e.g.mongoDB).

Mini-UAV Sensor
Metadata (Video
Embedded)

Video stream includes
a set of metadata about
the position of Mini-
UAV, target location,
etc. These data are
available (embedded,
KLV protocol) for each
frame of the stream.

Embedded in the
Video (RTSP link)

Streaming

/RTSP protocol

Local storage at ground
Control Station (file
system). They can also
be stored (moved) to
any database
(e.g.mongoDB).

Mini-UAV Sensor
Metadata

Metadata about the
sensor, Mini-UAV
position, target corners
coordinates, field of
view, etc. These data
are available during the
flight from a different
(than video) stream of
data. The frequency of
data is about 100ms.

JSON Format

Streaming data
(tens of bytes)
every 100ms

The source is SQL db
(not accessible outside
the GCS). We can send
the data via Message
Bus (i.e. Active MQ,
DDS) or other end
points.

Thermal Image
(and/or
hyperspectral)

Thermal (and/or
hyperspectral) video
streams are available.

Similar with Video
Files (UAV)

Streaming

/RTSP protocol

Local storage at ground
Control Station (file
system). They can also
be stored (moved) to
any database
(e.g.mongoDB).

Mini-UAV Monitoring
data

Status of the Mini-UAV
(battery, telemetry,
etc.) can be delivered
in real-time from the
aerial platform to the
ground.

JSON Format

Streaming data
(tens of bytes)
every 100ms

We can send the data
via Message Bus (i.e.
Active MQ, DDS) or
other end points.

An example (JSON) of the format used for accessing the data:

"header": {
 "when": “1/1/2001”
 "where": "country",
 "who": "author",
 "desc": "Some part"
 },
 "parameters": [{
 "name": "Power",
 "values": [{
 "timestamp": "12/12/2012",
 "value": 1.0
 }, {
 "timestamp": "12/12/2013",
 "value": 2.0
 }, {
 "timestamp": "12/12/2014",

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 53

 "value": 3.0
 }]
 }, {
 "name": "Current",
 "values": [{
 "timestamp": "12/12/2015",
 "value": 4.0
 }, {
 "timestamp": "12/12/2016",
 "value": 5.0
 }]
 }]
}

Table 3: Data source description, ADITESS use case

4.3 Media Use Cases – LiveU

4.3.1 Available data

This subsection contains basic information about the data which is available in this use case, partially
described in D7.1 and D7.10.

The data available for the media use case is based on LiveU historical data that can be extracted to be
used by the project. The following figures are examples that illustrate the need for dynamic resource
management at the cloud.

Figure 24: Data volume over one year

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 54

Figure 25: Data volume over two days

Figure 26: Number of Streaming devices over one year

Figure 27: Number of Streaming devices over 2 days

The Media use case involves thousands of unites that are distributed all over the world, the units are
referred as „LU“, in the following years to come with WebRTC technologies we expect larger amount of
users using their browser and contributing data to the Media use case.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 55

Figure 28: Media Use Case Data Sources

The data is all collected into 2 databases, where additional monitoring tools are used, these tools are
also storing the data in different format and might be extracted from them as well (like the PRTG and
DB3)
A short explanation on the sources of data we have today, the tools we use, and what type of data is
gathered:
• LUC data base, data on devices and their sessions: LUC is the central hub of information for all

media connection. Every device and services such as SOLO (do it yourself) provided by LiveU
http://gosolo.tv/, community; video connection is done using the LUC. Statistics such as Traffic (in
and out), Errors (in and out), streaming and downtime.

• PRTG, taking info via SNMP from central: PRTG is a service product of Paessler company
(www.paessler.com), for network monitoring. PRTG can monitor all system and devices, traffic and
applications of IT infrastructure. LiveU uses the PRTG to monitor the LUC statistics. PRTG can
connect to the LUC via SNMP and SSH protocols.

• Grafana/Graphite, taking info from central via StatD: Grafana is an open source platform for visual
analytics and monitoring. Graphite is an advanced query editor that allow quick navigation
through metric spaces and functions.

• Google analytics, web sessions to the central, and more: Google Analytics is a freemium web
analytics service offered by Google that tracks and reports website traffic. Google Analytics is now
the most widely used web analytics service on the Internet.

• Amazon statistics: LiveU infrastructure is based on amazon Elastic Compute Cloud (EC2) services
instances. Monitoring is an important part of maintaining the reliability, availability, and
performance. Information such as CPU utilization, Memory utilization, Memory used, Network
utilization and more are available.

The different tools and monitoring today are mainly used for problems identifications and for health
monitoring of the servers. Example of samples information can be found here:

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 56

Figure 29: Media Use Case Data Samples

Data Type/Name of
Data/parameter

Data Description Sharing level
[P – Public]
[C – Consortium]
[R – Restricted]
/Availability
[H – Historical data Exist]
[F – Future]

NumberofSessions The number of concurrent
sessions the LiveU Central have
open over time.

C/H

session_id Session id number C/H
session_start_date_timestamp Time stamp of session start C/H
unit_sn Unit serial number C/H
unit_type Unit type C/H
unit_name Unit name C/H
unit_sw_version Version of software version used

by the unit
C/H

transmission_type Type of transmission the session
established

C/H

service_type Service type – media type C/H
Resolution Video resolution C/H
Delay Video delay C/H
KbpsUpstreamAvg Kbps for up stream C/H
KbpsDownloadAvg Kbps for down stream C/H
total_upstream_bandwidth Upstream bandwidth C/H
last_session_fragment C/H
Interfaces: operator Operator C/H
Interfaces: type Type of connection C/H
Interfaces: id Id number C/H
Interfaces: roaming If roaming is used C/H
location GPS coordinates C/H

Table 4: Types of data, sharing level and availability (LiveU)

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 57

4.3.2 Data access

The data will be accessed via JSON files with the following format:

 "session_fragments": [
 {
 "session_id": "3bac219e-66a1-445c-8748-bb892dfe0dca",
 "session_start_date_timestamp": 1494405307391,
 "session_start_date": "2017-05-10T08:35:07.391Z",
 "session_fragment_id": "671649",
 "last_session_fragment": false,
 "unit_BOSSID": "Boss100_0fe000091a3a5a01000000000100407a",
 "unit_sn": "501348-7472",
 "unit_type": "LU-500",
 "unit_name": "LUC_QA_LU500_7472",
 "unit_sw_version": "5.1(C10520.G2f6a21d)",
 "unit_primary_inventory_name": null,
 "unit_primary_inventory_id": null,
 "transmission_type": "streaming",
 "service_type": "video",
 "session_fragment_start_date_timestamp": 1494406803375,
 "session_fragment_end_date_timestamp": 1494410402951,
 "session_fragment_start_date": "2017-05-10T09:00:03.375Z",
 "session_fragment_end_date": "2017-05-10T10:00:02.951Z",
 "session_fragment_duration": 3600,
 "resolution": "720p50",
 "delay": "1600",
 "kbpsUpstreamAvg": 1316,
 "kbpsDownloadAvg": 0,
 "total_upstream_bandwidth": 4737090,
 "total_downstream_bandwidth": 0,
 "interfaces": [
 {
 "operator": "Ethernet",
 "type": "eth",
 "id": "1583286",
 "upstream": 4737090,
 "downstream": 0,
 "imsi": null,
 "iccid": null,
 "plmn": null,
 "roaming": null,
 "ssid": null,
 "vidPid": null
 },
 {
 "operator": "Vodafone",
 "type": "modem",
 "id": "1583287",
 "upstream": 0,
 "downstream": 0,
 "imsi": null,
 "iccid": null,
 "plmn": null,
 "roaming": null,
 "ssid": null,
 "vidPid": null
 }
],
 "location": null,
 "country": null,
 "latitude": 0,

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 58

 "longitude": 0,
 "samples": 637
 },
 {
 "session_id": "ed88fce4-9cc6-4466-aae9-c1c4e9cc9351",
 "session_start_date_timestamp": 1494410412334,
 "session_start_date": "2017-05-10T10:00:12.334Z",
 "session_fragment_id": "671650",
 "last_session_fragment": true,
 "unit_BOSSID": "Boss100_ios_5C1B81E8D6424CA39B0921BB35914A8C",
 "unit_sn": "",
 "unit_type": "LU-Smart",
 "unit_name": "akdrddrg",
 "unit_sw_version": "5.1(6.2.0-14(ios))",
 "unit_primary_inventory_name": "smartdev",
 "unit_primary_inventory_id": "smartdev",
 "transmission_type": "streaming",
 "service_type": "video",
 "session_fragment_start_date_timestamp": 1494410412334,
 "session_fragment_end_date_timestamp": 1494410412334,
 "session_fragment_start_date": "2017-05-10T10:00:12.334Z",
 "session_fragment_end_date": "2017-05-10T10:00:12.334Z",
 "session_fragment_duration": 0,
 "resolution": "720p (NTSC)",
 "delay": "2000",
 "kbpsUpstreamAvg": 274,
 "kbpsDownloadAvg": 0,
 "total_upstream_bandwidth": 274,
 "total_downstream_bandwidth": 0,
 "interfaces": [
 {
 "operator": "QA_MobileApps",
 "type": "wlan",
 "id": "1583288",
 "upstream": 274,
 "downstream": 0,
 "imsi": null,
 "iccid": null,
 "plmn": null,
 "roaming": null,
 "ssid": null,
 "vidPid": null
 }
],
 "location": null,
 "country": null,
 "latitude": 0,
 "longitude": 0,
 "samples": 1
 },

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 59

4.4. Logistics Use case – CVS

4.4.1 Available data

This subsection contains basic information about the data which is available in this use case, partially
described in D7.1 and D7.10.

Core data available to the project is a stream of vehicle positions and the associated sensor data.
Sensor data is read from the vehicle’s CAN bus and processed on the primary vehicle interface unit,
which has limited processing power and storage capabilities. Measurements are streamed to the cloud
periodically, but with limited frequency, depending on driving conditions and behavior. Currently,
sensor data is aggregated into a per-sensor histogram, and uploaded to the central database along
with current position information.

The position information is already being streamed to a pair of databases prepared for the purposes of
the PrEstoCloud project.

The histogram data is archived in an MS SQL server database at CVS Mobile, and is available as a
database snapshot on request.

Higher resolution position and sensor data can be stored either to an on-board storage device, or
streamed to the cloud on demand, but this is not enabled for any of the production systems.

We envision that majority of processing will occur on the vehicles user interface device, which can
communicate with the vehicle interface unit, and will function as the edge device. In cases of higher
computational load, processing will automatically migrate to the cloud.

For the extended use case, we intend to employ the vehicle’s user interface unit’s integrated cameras,
to monitor the state in the cabin and on the road, perform preliminary analysis of data on vehicle, and
offload the processing to the cloud in cases of emergency or uncertainty.

The following table lists the datasets available currently or in the future:

Type/name of data/parameter Data description Sharing level
[Public/Consortium/Restricted],
Availability [Historic / Future]

Vehicle sensor stream This realtime stream contains
measurements of vehicle
sensors and the current position,
direction and velocity.

C/H,F

Vehicle sensor archive This database contains vehicle
sensor histogram information, in
high resolution

C/H,F

Vehicle video streams Video that can be captured from
the on-board user interface
device

R/F

The following table lists details of each datasets:

Type/name of
data/parameter

Interfaces/format Type
stream/batch,
frequency

Storage (if/how data is to be stored)

Vehicle sensor
stream

Binary stream
from the vehicle to
the central

Stream Data is recorded in the primary MS SQL
database, secondary PostgreSQL
database at JSI, and a dedicated QMiner

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 60

database, JSON
over REST API
from the central
database towards
other consumers

database instance

Vehicle sensor
archive

MS SQL server
archive

Batch Data is already stored in the MS SQL
instance at CVS Mobile, and exported as
MS SQL server archive dumps

Vehicle video
streams

H.264 stream from
the built-in camera
to the edge device
CPU, H.264 stream
embedded in MKV
container from
edge to cloud
possible

Stream and batch A restricted and time-limited form of
storage will be implemented on the
cloud side to enable machine learning;
long term storage not needed

As some of the data from edge devices is already being archived and processed, we describe the
detailed format of the data and methods for access here.

Format of the data stream coming from the current CVS Mobile services include three main data
packets, described below.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 61

The next section describes how to access this data in a structured form.

4.4.2 Data access and storage

In this section we provide details for accessing the data relevant for this use case. We distinguish
between the possibilities:

(1) accessing the data in real-time (streaming interface)

(2) accessing data from the storage (DB interface)

Real-time position stream

The binary data stream that is described in the above table is received and converted to a JSON based
format using a simple data adapter. The format of the resulting JSON object is shown on the following
listing:

{

 'locations': [

 {

 'latitude': <LATTITUDE IN WGS84 COORDINATES>,

 'longitude': <LONGITUDE IN WGS84 COORDINATES,

 'time': <UNIX TIMESTAMP IN MILISECONDS>,

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 62

 'activities': { 'in_truck': 100 }

 }

]

}

The “in_truck” parameter specifies that the vehicle in question is a truck, and is currently a fixed
constant. This convention comes from the existing API constraint of the traffic.ijs.si service, which is
the current primary consumer of this data stream on the project side.

The data stream is pushed to registered REST consumers using an HTTP GET request for each new
JSON object. Additional payload of the REST query can be configured dynamically.

There are between 1000 and 2000 active vehicles in the test data stream, each transmitting position
and associated sensor data every 2 minutes or more frequently in case of non-uniform driving.

The data is stored in a PostgreSQL database, from where it can be retrieved in the same JSON format
using ODBC or direct PostgreSQL libraries. It is also streamed to the http://traffic.ijs.si/ service, which
is the primary distribution hub.

Traffic.ijs.si service provides a REST endpoint for submitting and querying data. Current API
documentation is available at
https://jozefstefaninstitute.github.io/nextPin/server/spd/documentation/apidoc/index.html.

Archived sensor data

Sensor data that is stored in an MSSQL server database is reduced to periodic histograms from the
original time-series format. There are currently 4 database tables available, listed in the following
table:

Table name Table description

Position data Time-series data representing the vehicle
position. These data points are not identical to the
ones received from the real-time stream.

EcoDriver Driving behavior metadata

FMSData Sensor data retrieved from the vehicle’s CAN bus

FuelSonda Fuel gauge time-series data

All the tables are available as a periodic static dump file.

http://traffic.ijs.si/
https://jozefstefaninstitute.github.io/nextPin/server/spd/documentation/apidoc/index.html

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 63

5. Use case Information Flow
This section focuses on the use case data flow as it is driven by the analytic demands. For each use case
scenario the data flow is visualized and described in the context of its processing logic.

5.1 Surveillance use case

The surveillance use case covers the monitoring and steering of several camera clusters. The process is
started by the security personnel who start the surveillance application.

Figure 30: Information flow ADITESS use case

Each camera performs a preprocessing step on its real-time video streams and sends relevant clips to
the Regional Processing Unit for further analysis and storage. Each Regional Processing Unit performs
further analysis on its associated camera cluster. In case an exceptional issue has been detected, the
Regional Processing Units share their data and processing power immediately in order to combine
information from the various camera clusters. In case the data volume exceeds the capabilities of the
Regional Processing Units, the use case data is transmitted to the cloud. Once the exceptional issue has
been further specified and located, the cameras can be re-adjusted in real-time for further specific data
collection.

5.2 Media use case

The media use case covers the collection and combination of several edge devices (e.g. professional
back pack transmitters, registered social media feeds). The process is started by a media control
center collecting feeds for a specific reporting event.

Figure 31: Information flow LiveU use case

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 64

Professional field reporters as well as private mobile device contributors provide their video/audio
streams to media brokers. This raw data is directly streamed into a cloud. The video and audio
processing logic at the media broker’s site collects incoming streams and stores them either into an on
premise customer server or feeds them into a content distribution network for further broadcasting
processing.

5.3 Logistics use case

The logistics use case covers the monitoring and steering of a truck fleet. The truck driver starts the
analytical process by starting the truck engine.

Figure 32: Information flow CVS use case

Each truck holds several sensors. The sensor data (“raw data”) is collected and evaluated in a small
preprocessing unit within the truck in a first step. In case of an exceptional issue (e.g. truck involved in
an accident) the data is transmitted to the cloud. The cloud holds all preprocessed exceptional issue
data for all trucks on the road. The data analytics center analyzes the cloud data for real-time fleet
optimization options. In case an optimizing result has been identified (e.g. nearby truck can support),
this can be automatically transmitted back to the trucks.

5.4 Use case data flow abstraction

In each use case we collect data from edge devices. They are being preprocessed either in the edge
device itself or in a nearby small processing unit. The preprocessing result is then transmitted into the
cloud for further real-time analysis and process steering. One of the possible outcomes of this real-
time analysis is the trigger of a real-time action on the edge device.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 65

6. Conclusion
In this deliverable we presented the outcomes from the work related to the analysis of the challenges
for developing an efficient architecture for the data collection and preprocessing.

There are three main outcomes from this deliverable, which will be used in developing the conceptual
architecture of the system:

1) the design of the architecture for data collection and processing

2) the requirements for the data adapters which are required by each component (technical partner)
in order to get and understand in the proper functional context the data from available data sources

3) the specification of the nature of data source available in use cases, emphasizing their big data
nature (which requires specific types of collection and processing).

There are several conclusions which will explicitly influence the development of the architecture:

1) edge processing is requested as a basic mechanism for processing data as close as possible to data
sources (local processing)

2) fog computing architecture is desired in order to ensure the flexibility of the local processing

3) real-time data integration architecture is a preferable solution, but not supported by all components

4) data adapter will cope with the heterogeneity of the requirements, provided by components

5) deployment of the data architecture in use cases is challenging, but feasible.

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 66

Appendix

7. Appendix 1 - Apama connectivity examples

<?xml version='1.0' encoding='UTF-8'?>

<myroot xmlns:p='http://www.myco.com/dummy-namespace'>
<myelement1>An element value</myelement1>
<myelement2 myattribute='123' myboolattribute='true'>456</myelement2>
<ignoredElement>XML content that is not included in the event definition
is ignored</ignoredElement>
<e1>Hello</e1>
<e1>there</e1>
<e-2 e2att='value1'><subElement>e2-sub-value1</subElement></e-2>
<e-2 e2att='value2'><subElement>e2-sub-value2</subElement></e-2>
<e1>world</e1>
<namespacedElement xmlns='urn:xmlns:foobar'>My namespaced
text</namespacedElement>
<p:namespacedElement>My namespaced text 2</p:namespacedElement>
<namespacedElement>My non-namespaced text 3</namespacedElement>
<return>Element whose name is an EPL keyword</return>
</myroot>

Connectivity example 1: JMS message whose body contains the XML document

event MyElement2
{
string _myattribute;
boolean _myboolattribute;
string xmlTextNode;
}
event E2
{
string _e2att;
string subElement;
}
event MyRoot
{
string myelement1;
MyElement2 myelement2;
sequence<string> e1;
sequence<string> namespacedElement;
string #return;
sequence<E2> e$002d2;
}
event MyEvent
{
string destination;
MyRoot myroot;
}

Connectivity example 2: Apama event MyEvent

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 67

MyEvent("queue:MyQueue",
 MyRoot("An element value",
 MyElement2("123",true,"456"),
 ["Hello","there","world"],
 ["My namespaced text","My namespaced text 2","My non-namespaced text 3"],
 "Element whose name is an EPL keyword",
 [E2("value1","e2-sub-value1"),E2("value2","e2-sub-value2")]
))

Connectivity example 3: parsed to the Apama event string

Discovery adbc := new Discovery;
 Connection conn := new Connection;
 Query query := new Query;

 float TIME_TO_WAIT := 5.0; // seconds to wait for responses

 string COMMAND_STRING := "DECLARE @myvar char(20)";
 string QUERY_STRING := "SELECT * FROM sys.tables";
 integer BATCH_SIZE := 5;
 string USER := "mysql"; // Change to your database username

 string PASSWORD := "mysql"; // Change to your database password

 // Change to true for parallel execution

 boolean parallelExecution := false;

 // Service ID for database to open.
 // Initialized by handleAvailableServers callback action

 string dbServiceId;

 // Name of database to open.
 // Initialized by handleAvailableDatabases callback action

 string dbName;

 // The current context when the monitor is loaded.
 // Initialized by onload action

 context preSpawnContext;

 action onload()

 {

 preSpawnContext := context.current(); // current context

 // Start the example by finding all available data sources.
 // The callback actions will perform the following:
 //

 // The findAvailableDataSources callback action will call
 // getDatabases to retrieve all databases for each data source found.
 //
 // The getDatabases callback action will open the first database.
 //

 // The openDatabase callback will run a command on the database.
 //

 // The runCommand callback action will create a query.
 // Set the query parameters, batchDoneListener and schemaListener.
 // Run the query.
 //

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 68

 // The runQuery callback action will close all queries on the database connection.
 //

 // The closeAllQueries callback action will close the database connection.

 // The adapter is now running

 on AdapterUp() {

 if parallelExecution {

 adbc.initPreSpawnContext(preSpawnContext);
 context discoveryContext := context("ADBC_Example");
 spawn runExample() to discoveryContext;
 }

 else {

 runExample();
 }

 }

 }

 action runExample() {

 log "Finding Data Sources ..." at INFO;

 adbc.findAvailableDataSources(TIME_TO_WAIT, handleAvailableServers);

 }

Connectivity example 4: ADBC example

emit OpenFileForReading(...) to "FILE"
The OpenFileForReading event definition is as follows:

event OpenFileForReading
{ string transportName;
 integer requestId;
 string codec;
 string filename;
 integer linesInHeader;
 string acceptedLinePattern;
 dictionary<string, string> payload;
}

Connectivity example 5: File Adapter example

connectivityPlugins:
 JSONCodec:
 directory: ${APAMA_HOME}/lib/
 classpath:
 - json-codec.jar
 class: com.softwareag.connectivity.plugins.JSONCodec
 httpClient:
 libraryName: HTTPClientSample
 class: HTTPClient
 mapperCodec:
 libraryName: MapperCodec
 class: MapperCodec
startChains:
 weatherService:
 - apama.eventMap:
 defaultEventType: com.apamax.Weather

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 69

 - mapperCodec:
 "*":
 towardsTransport:
 defaultValue:
 metadata.http.path: /data/2.5/weather?q=Cambridge,uk
 metadata.http.method: GET
 - JSONCodec
 - httpClient:
 host: api.openweathermap.org

Connectivity example 6: Connectivity plugin example

{"a":2,"b":["x","y","z"]}

Connectivity example 7: JSON example

event E {
integer a;
sequence<string> b;
}

Connectivity example 8: event example from JSON

monitor.subscribe("mqtt:topic_a");
on all A() as a {
print a.toString();
}

Connectivity example 9: subscribe to an MQTT topic

send A("hello world") to "mqtt:topic_a";

Connectivity example 10: to send an Apama event to the MQTT broker

event PutData {
integer requestId;
string requestString;
}
event PutDataResponse {
integer requestId;
string responseString;
}

Connectivity example 11: Apama events

tartChains:
 SimpleRestService:
 - apama.eventMap:
 # Channel that responses are delivered on
 defaultChannel: SRS-response
 - mapperCodec:
 PutData: # requests
 towardsTransport:
 mapFrom:

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 70

 - metadata.requestId: payload.requestId
 - payload: payload.requestString
 defaultValue:
 - metadata.http.method: PUT
 - metadata.http.path: /path/to/service
 PutDataResponse:
 towardsHost:
 mapFrom:
 - payload.responseString: payload
 - payload.requestId: metadata.requestId

 - classifierCodec:
 rules:
 - PutDataResponse:
 - stringCodec
 - httpClient:
 host: foo.com

Connectivity example 12: Rest service

private static final Logger LOGGER = Logger.getLogger(EngineClientSample.class);

 static final Field<String> FIELD_TEXT = FieldTypes.STRING.newField("text");
 static final EventType EVENT_TEST_EVENT = new EventType("TestEvent", FIELD_TEXT);
 static final EventParser EVENT_PARSER = new EventParser(EVENT_TEST_EVENT);

 private void runSample(String host, int port) throws Exception{
 try(
 // Create the engine client (does not connect until first method requiring remove
connection is invoked)
 // EngineClientInterface.close() will automatically get called upon exiting the try-with-
resources block

 EngineClientInterface engineClient = EngineClientFactory.createEngineClient(host, port,
"my-sample- process");
) {
 // Listen for events sent to the "samplechannel" channel
 ConsumerOperationsInterface myConsumer =
engineClient.addConsumer("myConsumer", "samplechannel");
 myConsumer.addEventListener(new EventListenerAdapter() {
 @Override
 public void handleEvent(Event evt) {
 evt = EVENT_PARSER.parse(evt.getText());
 System.out.println("Event listener received event with message:
'"+evt.getField(FIELD_TEXT)+"'"); } });

 // Inject some MonitorScript

 MonitorScript epl = new MonitorScript(

 "event TestEvent {" +"\n" +
 "string text;" +"\n" +
 "}" +"\n" +
 "" +"\n" +
 "monitor Echo {" +"\n" +
 "" +"\n" +
 "TestEvent test;" +"\n" +

PrEstoCloud GA 732339 Deliverable D2.4
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 71

 "" +"\n" +
 "action onload {" +"\n" +
 "on all TestEvent(*):test {" +"\n" +
 "send TestEvent(test.text) to \"samplechannel\";" +"\n" +
 "}" +"\n" +
 "}" +"\n" +
 "}");
 engineClient.injectMonitorScript(epl);

 // Wait a few seconds to be sure the injection event has been processed
 Thread.sleep(3000);

 // Get and display status statistics
 EngineStatus status = engineClient.getRemoteStatus();
 System.out.println(status);

 // Send some events (in a real app we might use the EventType class
 // to construct these programatically)
 engineClient.sendEvents(
 new Event(EVENT_TEST_EVENT).setField(FIELD_TEXT, "Hello, World"),
 new Event(EVENT_TEST_EVENT).setField(FIELD_TEXT, "Welcome to Apama")
);

 Thread.sleep(3000);

 // Delete the event type and monitor we added
 engineClient.deleteName("Echo", false);
 engineClient.deleteName("TestEvent", false);

 // Wait a few seconds for the output event to be received and the deletions processed
 Thread.sleep(3000);

 // Display status again
 status = engineClient.getRemoteStatus();
 System.out.println();
 System.out.println(status);
 }

}

public static void main(String[] argv) {

 if ((argv.length != 2) || (Integer.parseInt(argv[1]) <= 0)) {
 // Bad command line given
 System.out.println("Usage: java EngineClientSample <host> <port>");
 return;
 }

 String host = argv[0];
 int port = Integer.parseInt(argv[1]);
 try {
 new EngineClientSample().runSample(host, port);
 } catch (Exception ex) {
 LOGGER.error("Sample failed: ", ex);
 }
 }

Connectivity example 13: interfacing with the Apama Correlator through the Java engine client
API

