
PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 1

Project acronym: PrEstoCloud

Project full name:
Proactive Cloud Resources Management at the Edge

for efficient Real-Time Big Data Processing

Grant agreement number: 732339

D3.1 Communication Broker:

Iteration 1

Deliverable Editor: Nenad Stojanovic (Nissatech)

Other contributors:

Deliverable Reviewers: CNRS and ICCS

Deliverable due date: 31/12/2017

Submission date: 31/03/2018

Distribution level: Public

Version: 1.0

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 2

This document is part of a research project funded
by the Horizon 2020 Framework Programme of the European

Union

Change Log

Version Date Amended by Changes

0.1 18.12.2017 Nissatech ToC

0.2 31.01.2018 Nissatech Section 2

0.3 15.02.2018 Nissatech Section 3, Appendix 1 and 2

0.4 28.02.2018 Nissatech Section 4, Appendix 3

0.5 09.03.2018 Nissatech Section 5

0.6 26.03.2018 Nissatech Executive summary, Section 1, Ready for review

1.0 31.03.2018 Nissatech Final version

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 3

Table of Contents

Table of Contents .. 3

List of Figures... 6

List of Abbreviations ... 7

Executive Summary ... 8

1. Introduction ... 9

1.1 Scope and context of the document .. 9

1.2 Structure of the document .. 9

2. Comparison of ActiveMQ and RabbitMQ .. 10

2.1 Criterion 1 - Comparison considering scalability issues ... 10

2.1.1 ActiveMQ & criterion 1..10

2.1.2 RabbitMQ & criterion 1 ...12

2.2 Criterion 2 - Comparison considering security, access lists in distributed environment 13

2.2.1 ActiveMQ & criterion 2..13

2.2.2 RabbitMQ & criterion 2 ...15

2.3 Criterion 3 - Comparison considering cross protocol communication 18

2.3.1 ActiveMQ & criterion 3..18

2.3.2 RabbitMQ & criterion 3 ...18

2.4 Criterion 4 - Comparison considering support from various programming languages 19

2.4.1 ActiveMQ & criterion 4..19

2.4.2 RabbitMQ & criterion 4 ...19

2.5 Criterion 5 - Comparison considering monitoring broker health, error reporting 20

2.5.1 ActiveMQ & criterion 5..20

2.5.2 RabbitMQ & criterion 5 ...20

2.6 Criterion 6 - Comparison considering support by cloud infrastructure provider 21

2.6.1 ActiveMQ & criterion 6..21

2.6.2 RabbitMQ & criterion 6 ...21

2.7 Criterion 7 - Comparison considering RPC ... 22

2.7.1 Introduction ...22

2.7.2 ActiveMQ & criterion 7..22

2.7.3 RabbitMQ & criterion 7 ...22

2.8 Conclusion ... 23

3. Theoretical considerations ... 23

3.1 MQTT and AMQP .. 23

3.2 Topic Exchange ... 24

3.3 Queues .. 24

3.4 Connection Recovery .. 25

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 4

3.4.1 When Will Connection Recovery Be Triggered? ...25

3.4.2 Recovery Listeners ..26

3.5 TLS.. 26

3.6 Federation ... 26

3.6.1 Federated exchanges parameters ...27

3.7 Docker ... 30

4. Implementation ... 31

4.1 Overview .. 31

4.2 Installation guide ... 32

4.2.1 Step 1 – Install Docker ...32

4.2.2 Step 2 – Install Kitematic v0.17.3 ..32

4.2.3 Step 3 – Prepare files for easier configuration of broker ..32

4.2.4 Step 4 – Run everything! ...37

4.2.5 Step 5 – add Federation do down node ..39

4.2.6 Step 6 – RabbitMQ test TLS ...39

4.2.7 Some additional commands for using RabbitMQ over Docker ...41

4.3 Implemented structure and future plans ... 42

5. Usage of the broker in the PrEstoCloud .. 44

5.1 Message format ... 44

5.2 Topics .. 44

5.3 An example ... 45

5.4 Current procedure with sending data and creating topics ... 46

6. Appendix 1 - RabbitMQ .. 49

6.1 Exchanges and Exchange Types ... 49

6.1.1 Default Exchange ...49

6.1.2 Direct Exchange ...50

6.1.3 Fanout Exchange ...50

6.1.4 Topic Exchange ..51

6.1.5 Headers Exchange ...51

6.2 Queues .. 52

6.2.1 Queue Names ..52

6.2.2 Queue Durability ..52

6.3 Routing ... 52

6.3.1 Port Access ...52

7. Appendix 2 - Distributed RabbitMQ brokers .. 53

7.1 Bindings ... 53

7.2 Clustering .. 53

7.3 Federation ... 53

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 5

7.4 The Shovel ... 54

8. Appendix 3 - Install and use RabbitMQ on Ubuntu .. 55

8.1 Step 1 – Install Erlang... 55

8.2 Step 2 – Install RabbitMQ Server ... 55

8.3 Step 3 – Manage RabbitMQ Service .. 55

8.4 Step 4 – Create Admin User in RabbitMQ .. 55

8.5 Step 5 – Setup RabbitMQ Web Management Console ... 55

8.6 Step 6 – Run Code from Intellj .. 56

8.7 Step 7 - Enabling MQTT Plugin- http://www.rabbitmq.com/mqtt.html 56

8.8 Uninstall ... 56

8.9 Additional commands .. 56

8.9.1 Listing Consumers, Queues, Exchanges, Bindings, Hashes, Ciphers. ...56

8.9.2 Forgotten Acknowledgment ..56

References .. 57

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 6

List of Figures

Figure 1: JDBC Master/Slave: a) Initial State b) after Master Failure c) after Master Restart -------- 12

Figure 2: UI of ActiveMQ web console -- 20

Figure 3: UI of RabbitMQ management --- 21

Figure 4: Tightly coupled distributed applications --- 22

Figure 5: RabbitMQ and RPC --- 22

Figure 6: Example of Topic exchange with different topics --- 24

Figure 7: Management show that this ports now use SSL --- 39

Figure 8: How test looks from terminal -- 40

Figure 9: Implemented structure -- 42

Figure 10: Proposed topology -- 43

Figure 11: Topics in PrEstoCloud -- 45

Figure 12: An example --- 46

Figure 13: The basic architecture of a message queue --- 49

Figure 14: Broker with basic elements --- 49

Figure 15: Direct exchange routing -- 50

Figure 16: Fanout exchange routing -- 51

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 7

List of Abbreviations

AMQP Advanced Message Queuing Protocol

CA Certificate Authority

CLI Command-line Interface

CPU Central Processing Unit

GUI Graphical User Interface

JAAS Java Authentication and Authorization Service

JDBC Java Database Connectivity

JMS Java Message Service

JMX Java Management Extensions

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

MOM Message-Oriented Middleware

MQTT Message Queuing Telemetry Transport

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

RAM Random Access Memory

REST Representational state transfer

RPC Remote Procedure Call

RSS Rich Site Summary

SAN Storage Area Network

SASL Simple Authentication and Security Layer

SHA Secure Hash Algorithms

SSL Secure Sockets Layer

STOMP Simple (or Streaming) Text Orientated Messaging Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

WAN Wide Area Network

WSIF Web Services Invocation Framework

XMPP
Extensible Messaging Presence Protocol

https://en.wikipedia.org/wiki/Representational_state_transfer

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 8

Executive Summary

This deliverable is a result of a PrEstoCloud project task T3.1, “Communication broker for real-time
data streams”.

 We started the work by comparing ActiveMQ and RabbitMQ. We analyzed several parameters like:

- scalability types (ways to distribute broker)
- security support (TLS and access)
- cross protocol communication (MQTT and AMQP)
- programming languages support
- monitoring the work of broker and error reporting
- cloud infrastructure providers
- RPC and tutorials for installation and basic usage.

We concluded that RabbitMQ and ActiveMQ have almost same features implemented in different ways.
We choose RabbitMQ mainly because of the following:

- RabbitMQ, unlike ActiveMQ, use AMQP by default, so it has support for converting AMQP to
MQTT and vice versa

- RabbitMQ has much more documents, materials, examples, etc. to look for and the community
of RabbitMQ is larger

- Availability of an official docker image of RabbitMQ

The next step was to make research about the full set of functionalities provided by RabbitMQ. The
lessons learnt from this research were used to make decisions how to implement and configure the
PrEstoCloud broker. Here are some examples of these decisions:

- in our broker we use our TOPIC exchange (presto.cloud) with multiple queues;
- our presto.cloud exchange is durable, no auto-delete and external. This is set in definition.json

files. Beside this exchange we use multiple queues;
- we also have implemented automatic recovery from network failures, etc.

After this research, we have developed the PrEstoCloud broker with all needed functionality. First, we
started by implementing RabbitMQ on local machine and testing basic functionality and plugins. We
added management and learnt how to use it. After that we added MQTT plugin and implemented java
libraries for communication with broker. We used RabbitMQ amqp-client 5.2.0 for consumer and
eclipse.paho.client.mqttv3 1.2.0 for producer.

Thereafter we started to use Docker and put broker in container. Because of distribution part we
created two node of broker on different ports and connected them with federation. In the end we
added autorecovery and started some performance testing of pilot federated broker in order to make
broker stable and to check if it delivers all messages. This help us to remove some bugs and to have
stable version.

Next installation guide is optimized in way we have much preparation files and less commands.

Finally, we have created the maven libraries that can be used for communication with the broker.

The main conclusion is that the selected broker can satisfy the functional requirements and can be
efficiently implemented.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 9

1. Introduction

1.1 Scope and context of the document

This deliverable reflects a work performed on WP3/Task 3.1, “Communication broker for real-time
data streams”. The objective is to set up a Communication Broker layer that will undertake the
responsibility of relaying data streams on and off the PrEstoCloud platform. This document provides
the results of the 1st iteration cycle. The 2nd version will be delivered in M30.

The main objective of this deliverable is to develop a 1st version of the communication broker. The
consortium iteratively converged into the 1st release of the communication broker. We started from an
analysis of the most widely used brokers and selected RabbitMQ as a basis for PrEstoCloud. During the
iterative process of understanding functionalities provided by RabbitMQ and objectives and
requirements of the PrEStoCloud platform, the broker was conceptualized, developed, tested, refined
and improved.

The primary inputs for this deliverable are results from Task 3.1. Additionally, in order to develop the
broker, different deliverables have been taken into consideration. In particular, the development of the
broker has considered inputs from D2.2, D2.3 and D2.4.

Although in the list of requirements provided in the deliverable D2.2 there was only one requirement
related to the communication broker (FR-41 Ability to send / retrieve events to / from the
Communications Broker), during the work on the development of the broker we added two additional
requirements based on the detailed specification of use cases (D7.2):

- supporting the heterogeneity in the communication (edge devices – cloud services);
- supporting the federation of the brokers in order to support complex communication

topologies.

1.2 Structure of the document

In section 2 we present the results of the comparison of RabbitMQ and ActiveMQ and justify the
decision that we made.

Chapter 3 contains documentation part that helped us with making decisions and implementation of
broker.

In chapter 4, we explain how we created broker with all needed functionality.

In Chapter 5 we describe the usage of the broker in the PrEstoCloud.

The deliverable includes several appendixes:

Appendix 1 is about RabbitMQ.

In Appendix 2 the detailed information about the distributed RabbitMQ is provided.

Appendix 3 summarizes steps to be done to install and use RabbitMQ on Ubuntu.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 10

2. Comparison of ActiveMQ and RabbitMQ
In this section we compare Activisms [1] and RabbitMQ [11]. We do not consider Kafka1 due to issues
with scalability in WAN environment. Official Kafka documentation [25] states:

,,It is generally not advisable to run a single Kafka cluster that spans multiple datacenters as
this will incur very high replication latency both for Kafka writes and Zookeeper writes and
neither Kafka nor Zookeeper will remain available if the network partitions.’’

We have defined two phases for attaining knowledge and practical skills in order to become familiar
with RabbitMQ and successfully implement large scale federation which will meet project
requirements - research phase and experimentation phase.

 Research phase - based on project requirements, we have identified following research topics and

questions about MQTT broker before proceeding to experimentation phase:
1. Scalability types – federation, shovel, cluster in WAN, LAN context //Ways to distribute broker

2. Security, Access lists in distributed environment

3. Cross Protocol Communication (MQTT, AMQP)

4. Support from various programming languages (Client libraries)

5. Monitoring broker health, error reporting (GUI tools preferred)

6. Support by cloud infrastructure providers

7. Remote Procedure Call (RPC)

 Experimentation phase - the goal of experimentation is to set up broker federation in local

environment and try out basic functionalities examined during the research phase. Defined

experiments are:

1. Setting broker federation to use combination of federated and un-federated topics;

2. Setting up cluster of multiple brokers in local environment and try to include it into the
federation from experiment 1;

3. Setup security using TLS protocol;

4. Developing Java Client library to make it possible for partners to start experimenting with
broker.

In the rest of this section we compare ActiveMQ and RabbitMQ with respect to previously defined
criteria. For each criterion (at the end of the corresponding sub-section), we clarify the decision(s)
taken for the implementation of the PrEstoCloud broker. In the next section we explain what and how
has been implemented.

2.1 Criterion 1 - Comparison considering scalability issues

2.1.1 ActiveMQ & criterion 1

The content of this section is based on the following references: [7], [8], [10].

There are various topologies that you can employ with ActiveMQ, where clients are connected to
message brokers in various ways like:

 peer based;

1 https://kafka.apache.org/

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 11

 client server;
 hub and spoke.

To create distributed queues or topics we need to have the message brokers communicate with each
other.

Clustering is a large topic and often means different things to different people. Here is the list of
clustering that ActiveMQ support:

 MasterSlave

◦ JDBC Master Slave

◦ KahaDB Replication (Experimental)

◦ Pure Master Slave

◦ Shared File System Master Slave

 Networks of Brokers

 Replicated Message Store

Master/Slave for High Availability

Basically it means that all messages are replicated across each broker in the master/slave cluster.

Master/Slave works by having some form of replication; each message is owned by every broker in the
logical cluster. A master/slave cluster then acts as one logical message broker which could then be
connected via store and forward to other brokers.

In Master/Slave, queues and topics are all replicated between each broker in the cluster. So each
broker in the cluster has exactly the same messages available at any time so if a master fails, clients
failover to a slave and you don't lose a message.

Master Slave Type Requirements Pros Cons

Shared File System Master
Slave

A shared file system such
as a SAN

Run as many slaves as
required automatic
recovery of old
masters

Requires shared
file system

JDBC Master Slave A Shared database Run as many slaves as
required automatic
recovery of old
masters

Requires a shared
database. Also
relatively slow as it
cannot use the high
performance
journal

http://activemq.apache.org/pure-master-slave.html

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 12

a)

b) c)

Figure 1: JDBC Master/Slave2: a) Initial State b) after Master Failure c) after Master Restart

Store and forward - networks of brokers

It means the messages travel from broker to broker until they reach a consumer; with each message
being owned by a single broker at any point in time.

ActiveMQ uses consumer priority, this means that local JMS (Java Message Service) consumers are
always higher priority than remote brokers in a store and forward network.

When we publish a message on a queue, it is stored in the persistent store of the broker that the
publisher is communicating. Then if that broker is configured to store/forward to other brokers and
clients, the broker will send it to one of these clients. This dispatch algorithm continues until the
message is finally dispatched and consumed by a client.

At any point in time the message will only exist in one broker's store until it is consumed. Note that
messages are only distributed onto other brokers if there is a consumer on those brokers.

For topics the above algorithm is followed except, every interested client receives a copy of the
message - plus ActiveMQ will check for loops (to avoid a message flowing infinitely around a ring of
brokers).

Replicated Message Stores

It can reduce the risk of message loss to provide either a High Availability backup or a full Disaster
Recovery solution capable of surviving a data centre failure.

2.1.2 RabbitMQ & criterion 1

The content of this section is based on [14].

There are three ways to make the RabbitMQ broker itself distributed: with clustering, with federation,
and using the shovel. There is no need to pick a single approach - you can connect clusters together
with federation, or the shovel, or both.

Connecting brokers with the shovel is conceptually similar to connecting them with federation (the
shovel works at a lower level), because of that we has next comparison.

Federation / Shovel Clustering

2 https://access.redhat.com/documentation/en
US/Fuse_ESB_Enterprise/7.1/html/Fault_Tolerant_Messaging/files/FMQMasterSlaveJDBC.html

http://activemq.apache.org/networks-of-brokers.html
http://activemq.apache.org/replicated-message-store.html
https://access.redhat.com/documentation/en%20US/Fuse_ESB_Enterprise/7.1/html/Fault_Tolerant_Messaging/files/FMQMasterSlaveJDBC.html
https://access.redhat.com/documentation/en%20US/Fuse_ESB_Enterprise/7.1/html/Fault_Tolerant_Messaging/files/FMQMasterSlaveJDBC.html

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 13

Brokers are logically separate and may have
different owners.

A cluster forms a single logical broker.

Brokers can run different versions of RabbitMQ
and Erlang3.

Nodes must run the same version of RabbitMQ,
and frequently Erlang.

Brokers can be connected via unreliable WAN
links. Communication is via AMQP (optionally
secured by TLS), requiring appropriate users and
permissions to be set up.

Brokers must be connected via reliable LAN
links. Communication is via Erlang internode
messaging, requiring a shared Erlang cookie.

Brokers can be connected in whatever topology
you arrange. Links can be one- or two-way.

All nodes connect to all other nodes in both
directions.

Chooses Availability and Partition Tolerance
from the CAP theorem4.

Chooses Consistency and Partition Tolerance
from the CAP theorem.

Some exchanges in a broker may be federated
while some may be local.

Clustering is all-or-nothing.

A client connecting to any broker can only see
queues in that broker.

A client connecting to any node can see queues
on all nodes.

2.2 Criterion 2 - Comparison considering security, access lists in distributed environment

2.2.1 ActiveMQ & criterion 2

The content of this section is based on [2]. ActiveMQ security guide can be found at [22].

ActiveMQ 4.x and greater provides pluggable security through various different providers.

The most common providers are:

 JAAS for authentication
 a default authorization mechanism using a simple XML configuration file.

Simple Authentication Plugin with Anonymous access

<simpleAuthenticationPlugin anonymousAccessAllowed="true">

 <users>

 <authenticationUser username="system"

 password="manager" groups="users,admins"/>

 <authenticationUser username="user"

 password="password" groups="users"/>

 <authenticationUser username="guest"

 password="password" groups="guests"/>

 </users>

 </simpleAuthenticationPlugin>

3 https://www.erlang.org/

4 https://en.wikipedia.org/wiki/CAP_theorem

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 14

Authorization

In ActiveMQ we use a number of operations which can be associated with user roles and either
individual queues or topics. Additionally, wildcards can be used to attach to hierarchies of topics and
queues.

 Read - You can browse and consume from the destination
 Write - You can send messages to the destination
 Admin - You can lazily create the destination if it does not yet exist. This allows you fine

grained control over which new destinations can be dynamically created in what part of the
queue/topic hierarchy

Queues/Topics can specified using the ActiveMQ Wildcards syntax.

Based on [5]: ActiveMQ Artemis version allows sets of permissions to be defined against the queues
based on their address. An exact match on the address can be used or a wildcard match can be used
using the wildcard characters '#' and '*'.

Seven different permissions can be given to the set of queues which match the address. Those
permissions are:

 createDurableQueue - This permission allows the user to create a durable queue under
matching addresses.

 deleteDurableQueue - This permission allows the user to delete a durable queue under
matching addresses.

 createNonDurableQueue - This permission allows the user to create a non-durable queue
under matching addresses.

 deleteNonDurableQueue - This permission allows the user to delete a non-durable queue
under matching addresses.

 send - This permission allows the user to send a message to matching addresses.
 consume - This permission allows the user to consume a message from a queue bound to

matching addresses.
 manage - This permission allows the user to invoke management operations by sending

management messages to the management address.

http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
For each permission, a list of roles who are granted that permission is specified. If the user has any of
those roles, he/she will be granted that permission for that set of addresses.

Let's take a simple example:

<security-setting match="globalqueues.europe.#">

 <permission type="createDurableQueue" roles="admins"/>

 <permission type="deleteDurableQueue" roles="admins"/>

 <permission type="createNonDurableQueue" roles="admins, guests, users"/>

 <permission type="deleteNonDurableQueue" roles="admins, guests, users"/>

 <permission type="send" roles="admins, users"/>

 <permission type="consume" roles="admins, users"/>

</security-setting>

More information can be found at: http://activemq.apache.org/how-do-durable-

queues-and-topics-work.html

TLS transport

When messaging clients are connected to servers, or servers are connected to other servers (e.g. via
bridges) over an untrusted network then ActiveMQ allows that traffic to be encrypted using the
Transport Layer Security (TLS) transport.

http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 15

Basic user credentials

ActiveMQ ships with a security manager implementation that reads user credentials, i.e. user names,
passwords and groups information from properties files on the classpath
called users.properties and groups.properties. This is the default security manager.

users.properties file is basically just a set of key value pairs that define the users and their password,
like so:

system=manager
user=password
guest=password

groups.properties defines what groups these users belong too where the key is the groupname and the
value is a comma-seperated list of users, like so:

admins=system

users=system,user

guests=guest

If you wish to use this security manager, then users, passwords and groups can easily be added into
these files.

In order for cluster connections to work correctly, each node in the cluster must make connections to
the other nodes. The username/password they use for this should always be changed from the
installation default to prevent a security risk.

Authentication Example

 login.config http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-
tests/src/test/resources/login.config

 users.properties http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-
tests/src/test/resources/org/apache/activemq/security/users.properties

 groups.properties http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-
tests/src/test/resources/org/apache/activemq/security/groups.properties

2.2.2 RabbitMQ & criterion 2

The content of this section is based on [12] and [18],

Access Control

Default Virtual Host and User

When the server first starts running, and detects that its database is uninitialized or has been deleted,
it initializes a fresh database with the following resources:

 a virtual host named /
 a user named guest with a default password of guest, granted full access to the / virtual host.

A "guest" user can only connect via localhost.

When a RabbitMQ client establishes a connection to a server, it specifies a virtual host within which it
intends to operate. A first level of access control is enforced at this point, with the server checking
whether the user has any permissions to access the virtual hosts, and rejecting the connection attempt
otherwise.

RabbitMQ distinguishes between configure, write and read operations on a resource. The configure

http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/login.config
http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/login.config
http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/org/apache/activemq/security/users.properties
http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/org/apache/activemq/security/users.properties
http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/org/apache/activemq/security/groups.properties
http://svn.apache.org/repos/asf/activemq/trunk/activemq-unit-tests/src/test/resources/org/apache/activemq/security/groups.properties

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 16

operations create or destroy resources, or alter their behavior. The write operations inject messages
into a resource. And the read operations retrieve messages from a resource.

In order to perform an operation on a resource the user must have been granted the appropriate
permissions for it.

Topic Authorisation

As of version 3.7.0, RabbitMQ supports topic authorisation for topic exchanges. Topic authorisation
targets protocols like STOMP and MQTT, which are structured around topics and use topic exchanges
under the hood.

Topic authorisation is an additional layer on top of existing checks for publishers. Publishing a
message to a topic-typed exchange will go through both the basic.publish and the routing key checks.
The latter is never called if the former refuses access.

Topic authorisation can also be enforced for topic consumers. Note that it works different for different
protocols.

Internal (default) authorisation backend supports variable expansion in permission patterns. Three
variables are supported: username, vhost, and client_id. Note that client_id only applies to MQTT. For
example, if tonyg is the connected user, the permission ^{username}-.* is expanded to ^tonyg-.*

If a different authorisation backend (e.g. LDAP, HTTP, AMQP) is used, please refer to the
documentation of those backends.

If a custom authorisation backend is used, topic authorisation is enforced by implementing the
check_topic_access callback of the rabbit_authz_backend behavior.

Alternative Authentication and Authorisation Backends

Authentication and authorisation are pluggable. Plugins can provide implementations of:

 authentication ("authn") backends
 authorisation ("authz") backends

It is possible for a plugin to provide both. For example the internal, LDAP and HTTP backends do so.

Some plugins, for example, the Source IP range one5, only provide an authorisation backend.
Authentication is supposed to be handled by the internal database, LDAP, etc.

Combining Backends

It is possible to use multiple backends for authn or authz using the auth_backends configuration key.
When several authentication backends are used then the first positive result returned by a backend in
the chain is considered to be final. This should not be confused with mixed backends (for example,
using LDAP for authentication and internal backend for authorisation).

Authentication

RabbitMQ has pluggable support for various Simple Authentication and Security Layer (SASL)
authentication mechanisms. There are three such mechanisms built into the server: PLAIN,
AMQPLAIN, and RABBIT-CR-DEMO, and one - EXTERNAL - available as a plugin. You can also
implement your own authentication mechanism by implementing the rabbit_auth_mechanism
behaviour in a plugin.

5 https://github.com/gotthardp/rabbitmq-auth-backend-ip-range

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 17

The built-in mechanisms are:

 PLAIN - SASL PLAIN authentication. This is enabled by default in the RabbitMQ server and
clients, and is the default for most other clients.

 AMQPLAIN - Non-standard version of PLAIN as defined by the AMQP 0-8 specification. This is
enabled by default in the RabbitMQ server, and is the default for QPid's Python client.

 EXTERNAL - Authentication happens using an out-of-band mechanism such as x509 certificate
peer verification, client IP address range, or similar. Such mechanisms are usually provided by
RabbitMQ plugins.

 RABBIT-CR-DEMO - Non-standard mechanism which demonstrates challenge-response
authentication. This mechanism has security equivalent to PLAIN, and is not enabled by default
in the RabbitMQ server.

Per AMQP 0-9-1 spec, authentication failures should result in the server closing TCP connection
immediately. However, with RabbitMQ clients can opt in to receive a more specific notification using
the authentication failure notification extension to AMQP 0-9-1.

Credentials and Passwords

RabbitMQ supports multiple authentication mechanisms. Some of them use username/password pairs.
These credential pairs are then handed over to an authentication backends that perform
authentication. One of the backends, known as internal or built-in, uses internal RabbitMQ data store
to store user credentials. When a new user is added using rabbitmqctl, her password is combined with
a salt value and hashed.

As of version 3.6.0, RabbitMQ can be configured to use several password hashing functions:

 SHA-256
 SHA-512
 MD56 (only for backwards compatibility)
 SHA-256 is used by default. More algorithms can be provided by plugins.

Credential Validation

Starting with version 3.6.7 it is possible to define a credential validator. It only has effect on the
internal authentication backend and kicks in when a new user is added or password of an existing user
is changed.

Validators are modules that implement a validation function. To use a validator, it is necessary to
specify it and its additional settings in the config file. There are three credential validators available
out of the box:

 rabbit_credential_validator_accept_everything: unconditionally accepts all values. This
validator is used by default for backwards compatibility.

 rabbit_credential_validator_min_password_length: validates password length
 rabbit_credential_validator_password_regexp: validates that password matches a regular

expression

Custom Credential Validators

Every credential validator is a module that implements a single function behaviour,
rabbit_credential_validator. Plugins therefore can provide more implementations.

6 https://en.wikipedia.org/wiki/MD5

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 18

Credential validators can also validate usernames or apply any other logic (e.g. make sure that
provided username and password are not identical).

Passwordless Users

Internal authentication backend allows for users without a password or with a blank one.

Authentication Using TLS (x509) Certificates

It is possible to authenticate connections using x5097 certificates and avoid using passwords entirely.
The authentication process then will rely on TLS peer certificate chain validation.

2.3 Criterion 3 - Comparison considering cross protocol communication

2.3.1 ActiveMQ & criterion 3

The content of this section is based on [6].

ActiveMQ is a message broker which supports multiple wire level protocols for maximum
interoperability.

● AMQP
● AUTO
● MQTT
● OpenWire
● REST
● RSS and Atom
● Stomp
● WSIF
● WS Notification
● XMPP

There is no clear way to convert AMQP to MQTT or vice versa.

2.3.2 RabbitMQ & criterion 3

The content of this section is based on [13].

RabbitMQ supports several messaging protocols, directly and through the use of plugins. The
supported protocols are:

 AMQP 0-9-1, 0-9 and 0-8, and extensions
 STOMP
 MQTT
 AMQP 1.0
 HTTP

More information can be found at:

 https://www.rabbitmq.com/mqtt.html#overview
 https://blogs.sap.com/2016/02/21/uniting-amqp-and-mqtt-message-brokering-with-

rabbitmq/

7 https://en.wikipedia.org/wiki/X.509

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 19

2.4 Criterion 4 - Comparison considering support from various programming languages

2.4.1 ActiveMQ & criterion 4

The content of this section is based on [9].

ActiveMQ is a message broker written in Java with JMS, REST and WebSocket interfaces, however it
supports protocols like AMQP, MQTT, OpenWire and STOMP that can be used by applications in
different languages.

The following client libraries are supported:

 .NET
 C (defunct)
 C++
 Erlang
 Go
 Haskell
 Haxe (defunct)
 Jekejeke Prolog
 NetLogo
 Node.js
 Perl 5
 Pike
 Python
 Racket
 Ruby on Rails
 Tcl/Tk

2.4.2 RabbitMQ & criterion 4

The content of this section is based on [15].

RabbitMQ is officially supported on a number of operating systems and several languages. In addition,
the RabbitMQ community has created numerous clients, adaptors and tools. Some of them are
mentioned here:

 Java and Spring
 .NET
 Ruby
 Python
 PHP
 Objective-C and Swift
 Other JVM Languages

o Scala
o Groovy and Grails
o Clojure
o JRuby

 JS
 C/C++
 GO
 Unity 3D

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 20

2.5 Criterion 5 - Comparison considering monitoring broker health, error reporting

2.5.1 ActiveMQ & criterion 5

The content of this section is based on [4].

You can monitor ActiveMQ using the Web Console by pointing your browser at:

http://localhost:8161/admin

We note here that only works if you open the browser from the same machine that the broker is
installed on.

The other possibility is to use the JMX8 support to view the running state of ActiveMQ.
For more information see the file docs/WebConsole-README.txt in the distribution.

Figure 2: UI of ActiveMQ web console

ActiveMQ web console has next tabs: Home, Queues, Topics, Subscribers, Connections, Scheduled,
Send.

2.5.2 RabbitMQ & criterion 5

The content of this section is based on [16] and [17].

The RabbitMQ management plugin provides a starting point for monitoring RabbitMQ metrics. One
limitation, however, is that only up to one day's worth of metrics are stored. Storing historical metrics
can be an important tool to determine the root cause of issues affecting your users or to plan for future
capacity.

RabbitMQ metrics are made available through the HTTP API via the api/queues/vhost/qname
endpoint. It is recommended to collect metrics at 60 second intervals because more frequent
collection may place too much load on the RabbitMQ server and negatively affect performance.

RabbitMQ supported metrics are: Memory, Queued Messages, Un-acked Messages, Messages
Published, Message Publish Rate, Messages Delivered, Message Delivery Rate… Other Message Stats.

The following is an alphabetised list of third-party tools to collect RabbitMQ metrics. These tools have
the capability to monitor the recommended system and RabbitMQ metrics. Most of them are open
source plugins from GitHub:

 AppDynamics
 collectd
 DataDog

8 http://activemq.apache.org/jmx.html

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 21

 Ganglia
 Graphite
 Munin
 Nagios
 New Relic
 Prometheus
 Zabbix
 Zenoss

The rabbitmq-management plugin provides an HTTP-based API for management and monitoring of a
RabbitMQ server, along with a browser-based UI and a command line tool, rabbitmqadmin.

Figure 3: UI of RabbitMQ management

2.6 Criterion 6 - Comparison considering support by cloud infrastructure provider

Over Docker containerization both can be put on any cloud platform.

2.6.1 ActiveMQ & criterion 6

ActiveMQ does not have official image on Docker. There are some popular community images
https://hub.docker.com/search/?q=activemq.

It can also be put on cloud over bitnami - https://bitnami.com/stack/activemq. Bitnami Cloud Images
are currently available for Google Cloud Platform, Amazon Web Services, Oracle Cloud Infrastructure
Classic, Microsoft Azure, CenturyLink, and 1&1 Cloud Platform.

2.6.2 RabbitMQ & criterion 6

The content of this section is based on [11], [23] and [24].

The following companies provide technical support and/or cloud hosting of open source RabbitMQ:
Pivotal Software, CloudAMQP, Google Cloud Platform. RabbitMQ can also be deployed in AWS,

https://hub.docker.com/search/?q=activemq
https://bitnami.com/stack/activemq

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 22

Microsoft Azure and Heroku (https://elements.heroku.com/addons/rabbitmq-bigwig).

RabbitMQ has official image on Docker hub - https://hub.docker.com/_/rabbitmq/.

Additionally, RabbitMQ also has bitnami support – https://bitnami.com/stack/rabbitmqFehler!
Hyperlink-Referenz ungültig.

2.7 Criterion 7 - Comparison considering RPC

The content of this section is based on [3].

2.7.1 Introduction

Unlike systems based on a RPC pattern, messaging systems primarily use an asynchronous message
passing pattern with no tight relationship between requests and responses. Most messaging systems
also support a request-response mode but this is not a primary feature of messaging systems.

Technologies using RPC (Remote Procedure Calls) are called tightly coupled distributed applications.
Using RPC, one application can call the other application. There are many disadvantages of tightly
coupled technologies, a higher maintenance cost being the most common. Another disadvantage is
when one application calls another application through RPC, the other application must be available to
receive the call or else the whole architecture fails. Figure 2 shows the architecture of two tightly
coupled distributed applications.

Figure 4: Tightly coupled distributed applications

2.7.2 ActiveMQ & criterion 7

Information about implementing RPC with ActiveMQ request-response messages can be found at [21].

2.7.3 RabbitMQ & criterion 7

The content of this section is based on [19] and [20].

You can send request-response messages using the RabbitMQ transport by implementing a Remote
Procedure Call (RPC) scenario with RabbitMQ.

Figure 5: RabbitMQ and RPC

https://hub.docker.com/_/rabbitmq/
https://bitnami.com/stack/rabbitmq
https://bitnami.com/stack/rabbitmq

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 23

2.8 Conclusion

Like we see RabbitMQ and ActiveMQ have almost same features implemented in different ways. But we
choose RabbitMQ mainly because of the following differences:

 Cross protocol communication
RabbitMQ, unlike ActiveMQ, use AMQP by default, so it has support for converting AMQP to
MQTT and vice versa. This is feasible with MQTT plugin - RabbitMQ MQTT Adapter. It makes it
possible for MQTT clients to interoperate with AMQP 0-9-1, AMQP 1.0, and STOMP clients.
ActiveMQ can convert AMQP to JMS, and MQTT protocol will automatically map between JMS
and MQTT clients, but there is no concrete proof or example how easy implementation is.

 Documentation, materials and plugins
During the research we find out that RabbitMQ has much more documents, materials,
examples, etc. to look for. Community of RabbitMQ is larger. Their site has better structure, so
it is faster to find an answers. Also RabbitMQ has better documentation about all available
plugins. ActiveMQ has only description about some important plugins.

 Official docker image of RabbitMQ (see criterion 2.6)

3. Theoretical considerations

This section contains documentation part that helped us with making decisions and implementation of
broker. References in the title were used to create this section.

3.1 MQTT and AMQP

The content of this section is based on [26].

For PrEstoCloud project we need to use both MQTT and AMQP protocols. RabbitMQ use AMQP 0-9-1
by default, but MQTT 3.1.1 is implemented with MQTT plugin. The MQTT plugin builds on top of
RabbitMQ core protocol's entities: exchanges and queues. Messages published to MQTT topics use a
topic exchange (amq.topic by default) internally. Subscribers consume from RabbitMQ queues bound
to the exchange. MQTT adapter expects for exchange to be a topic type.

Note that MQTT uses slashes ("/") for topic segment separators and AMQP uses dots. This plugin
translates patterns under the hood to bridge the two, for example, watch/<id> becomes watch.<id>
and vice versa. This has one important limitation: MQTT topics that have dots in them won't work as
expected and are to be avoided, the same goes for AMQP routing keys that contains slashes. Topics in
RabbitMQ are called routing key.

AMQP Wildcards [27]

* (star) can substitute for exactly one word.

(hash) can substitute for zero or more words.

MQTT Wildcards [28]

+ (plus) can substitute for single level

(hash) can substitute for multiple level

So in our broker we use our TOPIC exchange named presto.cloud with multiple queues.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 24

3.2 Topic Exchange

The content of this section is based on [29].

Topic exchanges route messages to one or many queues based on matching between a message
routing key and the pattern that was used to bind a queue to an exchange. The topic exchange type is
often used to implement various publish/subscribe pattern variations. Topic exchanges are commonly
used for the multicast routing of messages.

Topic exchanges have a very broad set of use cases. Whenever a problem involves multiple
consumers/applications that selectively choose which type of messages they want to receive, the use
of topic exchanges should be considered.

Figure 6: Example of Topic exchange with different topics

Besides the exchange type, exchanges are declared with a number of attributes, the most important of
which are:

 Name
 Durability (exchanges survive broker restart)
 Auto-delete (exchange is deleted when last queue is unbound from it) and
 Arguments (optional, used by plugins and broker-specific features).

Our presto.cloud exchange is durable, no auto-delete and external. This is set in definition.json files.
Beside this exchange we use multiple queues.

3.3 Queues

The content of this section is based on [29].

Queues in the AMQP model are very similar to queues in other message- and task-queueing systems:
they store messages that are consumed by applications. Queues share some properties with
exchanges, but also have some additional properties:

 Name
 Durable (the queue will survive a broker restart)
 Exclusive (used by only one connection and the queue will be deleted when that connection

closes)
 Auto-delete (queue that has had at least one consumer is deleted when last consumer

unsubscribes)
 Arguments (optional; used by plugins and broker-specific features such as message TTL, queue

length limit, etc.)

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 25

Before a queue can be used it has to be declared. Declaring a queue will cause it to be created if it does
not already exist.

Applications may pick queue names or ask the broker to generate a name for them. An AMQP broker
can generate a unique queue name on behalf of an app. In our project we use the name created by
broker by default, but user can also set his queue names.

User can change and adapt all parameters for queue declaration to his need, but default setup is
durable, no exclusive, no auto delete queue that expires after it has been unused for 2 days.

We also have implemented automatic recovery from network failures. We will discuss this further
down.

3.4 Connection Recovery

The content of this section is based on [30].

Network connection between clients and RabbitMQ nodes can fail. RabbitMQ Java client supports
automatic recovery of connections and topology (queues, exchanges, bindings, and consumers). The
automatic recovery process for many applications follows the following steps:

1. Reconnect
2. Restore connection listeners
3. Re-open channels
4. Restore channel listeners
5. Restore channel basic.qos setting, publisher confirms and transaction settings

Topology recovery includes the following actions, performed for every channel:

1. Re-declare exchanges (except for predefined ones)
2. Re-declare queues
3. Recover all bindings
4. Recover all consumers

Topology recovery involves recovery of exchanges, queues, bindings and consumers. It is enabled by
default when automatic recovery is enabled. Topology recovery can be disabled explicitly if needed:
factory.setTopologyRecoveryEnabled(false);. To disable or enable automatic connection recovery, you
should use the factory.setAutomaticRecoveryEnabled(boolean) method.

If recovery fails due to an exception (e.g. RabbitMQ node is still not reachable), it will be retried after a
fixed time interval (default is 5 seconds). The interval can be configured
factory.setNetworkRecoveryInterval(10000); this is 10s.

3.4.1 When Will Connection Recovery Be Triggered?

Automatic connection recovery, if enabled, will be triggered by the following events:

 An I/O exception is thrown in connection's I/O loop
 A socket read operation times out
 Missed server heartbeats are detected
 Any other unexpected exception is thrown in connection's I/O loop

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 26

whichever happens first.

Channel-level exceptions will not trigger any kind of recovery as they usually indicate a semantic issue
in the application (e.g. an attempt to consume from a non-existent queue).

3.4.2 Recovery Listeners

It is possible to register one or more recovery listeners on recoverable connections and channels.
When connection recovery is enabled, connections returned by ConnectionFactory#newConnection
and Connection#createChannel implement com.rabbitmq.client.Recoverable, providing two methods
with fairly descriptive names:

 addRecoveryListener
 removeRecoveryListener

Currently we need to cast connections and channels to Recoverable in order to use those methods.

A RecoveryListener receives notifications about completed automatic connection recovery. Because
we use generated queue names from broker, we use this listener for manual topology recovery.

3.5 TLS

The content of this section is based on [31] and [32].

Transport Layer Security (TLS) is a protocol that provides confidentiality and data integrity between
two communicating applications. It's the most widely deployed security protocol used today, and is
used for Web browsers and other applications that require data to be securely exchanged over a
network, such as file transfers, VPN connections, instant messaging and voice over IP.

TLS evolved from Netscape's Secure Sockets Layer (SSL) protocol and has largely superseded it,
although the terms SSL or SSL/TLS are still sometimes used. According to the protocol specification,
TLS is composed of two layers: the TLS Record Protocol and the TLS Handshake Protocol. The Record
Protocol provides connection security, while the Handshake Protocol allows the server and client to
authenticate each other and to negotiate encryption algorithms and cryptographic keys before any
data is exchanged.

TLS 1.2 is the current version of the protocol, and as of this writing, the Transport Layer Security
Working Group of the IETF is working on TLS 1.3 to address the vulnerabilities that have been
exposed over the past few years, reduce the chance of implementation errors and remove features no
longer needed. TLS 1.3 is still a draft and has not been finalized yet. We use 1.2 version of TLS.

3.6 Federation

The content of this section is based on [33], [34] and [35].

Federation allows an exchange or queue on one broker to receive messages published to an exchange
or queue on another (the brokers may be individual machines, or clusters). Communication is via
AMQP (with optional TLS).

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 27

The high-level goal of the federation plugin is to transmit messages between brokers without
requiring clustering. This is useful for various reasons:

 Loose coupling - The federation plugin can transmit messages between brokers (or clusters) in
different administrative domains:

◦ they may have different users and virtual hosts;

◦ they may run on different versions of RabbitMQ and Erlang.

 WAN-friendly - The federation plugin uses AMQP 0-9-1 to communicate between brokers, and
is designed to tolerate intermittent connectivity.

 Specificity - A broker can contain federated and local-only components - you don't need to
federate everything if you don't want to.

 Scalability - Federation does not require O(n2) connections between n brokers, which should
mean it scales better.

A federated exchange links to other exchanges (called upstream exchanges). Logically, messages
published to the upstream exchanges are copied to the federated exchange, as though they were
published directly to it. The upstream exchanges do not need to be reconfigured and they do not have
to be on the same broker or in the same cluster. All of the configuration needed to establish the
upstream links and the federated exchange is in the broker with the federated exchange and there is
nothing to prevent a federated exchange being 'upstream' from another federated exchange. Because
all of this we use this type of federation.

One typical use would be to implement massive fanout - a single "root" exchange in one broker (which
need not be federated) can be declared as upstream by many other federated exchanges in other
brokers. In turn, each of these can be upstream for many more exchanges, and so on.

Federated queues provides a way of balancing the load of a single queue across nodes or clusters. A
federated queue links to other queues (called upstream queues). It will retrieve messages from
upstream queues in order to satisfy demand for messages from local consumers. The upstream queues
do not need to be reconfigured and they do not have to be on the same broker or in the same cluster.

When using a federation in a cluster, all the nodes of the cluster should have the federation plugin
enabled. Information about federation upstreams is stored in the RabbitMQ database, along with
users, permissions, queues, etc. There are three levels of configuration involved in federation:

 Upstreams: each upstream defines how to connect to another broker.

 Upstream sets: each upstream set groups together a set of upstreams to use for federation.

 Policies: each policy selects a set of exchanges, queues or both, and applies a single upstream
or an upstream set to those objects.

In practice, for simple use cases you can almost ignore the existence of upstream sets, since there is an
implicitly-defined upstream set called all to which all upstreams are added.

3.6.1 Federated exchanges parameters

The content of this section is based on [36] and [37].

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 28

3.6.1.1 uri

The AMQP URI(s) for the upstream. This field can either be a string, or a list of strings. If more than one
string is provided, the federation plugin will randomly pick one URI from the list. This can be used to
connect to an upstream cluster. To connect to multiple URIs simultaneously use multiple upstreams.

The syntax of an AMQP 0-9-1 URI is defined by the following ABNF rules.

amqp_URI = "amqp://" amqp_authority ["/" vhost] ["?" query]
 amqp_authority = [amqp_userinfo "@"] host [":" port]
 amqp_userinfo = username [":" password]
 username = *(unreserved / pct-encoded / sub-delims)
 password = *(unreserved / pct-encoded / sub-delims)
 vhost = segment

query can has some of next parameters:

Parameter name Description

cacertfile, certfile, keyfile Paths to files to use in order to present a client-side TLS certificate to
the server. Only of use for the amqps scheme.

verify,
server_name_indication

Only of use for the amqps scheme and used to configure verification
of the server's x509 (TLS) certificate. It is highly recommended
to use both values.

auth_mechanism

SASL authentication mechanisms to consider when negotiating a
mechanism with the server. This parameter can be specified multiple
times.

heartbeat

Heartbeat timeout value in seconds (an integer) to negotiate with
the server.

connection_timeout Time in milliseconds (an integer) to wait while establishing a TCP
connection to the server before giving up.

channel_max Maximum number of channels to permit on this connection

We use next uri:

amqps://guest:guest@192.168.85.112:35671?cacertfile=/home/testca/cacert.pem&certfile=/home/c
lient/cert.pem&keyfile=/home/client/key.pem&verify=verify_peer&fail_if_no_peer_cert=true&server_
name_indication=nissatech2.com

So we use AMQPS protocol to connect to IP address of upbroker with default user credentials on
matching port with TLS.

3.6.1.2 prefetch-count

The maximum number of unacknowledged messages copied over a link at any one time. Default is
1000. We use this number.

mailto:guest@192.168.85.112

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 29

3.6.1.3 reconnect-delay

The duration (in seconds) to wait before reconnecting to the broker after being disconnected. Default
is 1 and we use it.

3.6.1.4 ack-mode

Determines how the link should acknowledge messages. If set to on-confirm (the default), messages
are acknowledged to the upstream broker after they have been confirmed downstream. This handles
network errors and broker failures without losing messages, and is the slowest option. We use this
approach because this benefits.

If set to on-publish, messages are acknowledged to the upstream broker after they have been
published downstream. This handles network errors without losing messages, but may lose messages
in the event of broker failures.

If set to no-ack, message acknowledgements are not used. This is the fastest option, but may lose
messages in the event of network or broker failures.

3.6.1.5 trust-user-id

Determines how federation should interact with the validated user-id feature. If set to true, federation
will pass through any validated user-id from the upstream, even though it cannot validate it itself. If set
to false or not set, it will clear any validated user-id it encounters. You should only set this to true if
you trust the upstream server (and by extension, all its upstreams) not to forge user-ids. We set it on
false.

3.6.1.6 exchange

The name of the upstream exchange. Default is to use the same name as the federated exchange. We
use the same name.

3.6.1.7 max-hops

The maximum number of federation links that a message published to a federated exchange can
traverse before it is discarded. Default is 1 and we use it. Note that even if max-hops is set to a value
greater than 1, messages will never visit the same node twice due to travelling in a loop. However,
messages may still be duplicated if it is possible for them to travel from the source to the destination
via multiple routes.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 30

3.6.1.8 expires

The expiry time (in milliseconds) after which an upstream queue for a federated exchange may be
deleted, if a connection to the upstream broker is lost. The default is 'none', meaning the queue should
never expire. This setting controls how long the upstream queue will last before it is eligible for
deletion if the connection is lost. We set this value to 3 600 000, or 1h.

3.6.1.9 message-ttl

The expiry time for messages in the upstream queue for a federated exchange (see expires), in
milliseconds. Default is 'none', meaning messages should never expire, and we use it.

3.6.1.10 ha-policy

Determines the "x-ha-policy" argument for the upstream queue for a federated exchange (see expires).
This is only of interest when connecting to old brokers which determine queue HA mode using this
argument. Default is 'none', meaning the queue is not HA.

3.7 Docker

The content of this section is based on [38] and [43].

Docker is an open platform for developing, shipping, and running applications. Docker enables you to
separate your applications from your infrastructure so you can deliver software quickly. With Docker,
you can manage your infrastructure in the same ways you manage your applications. By taking
advantage of Docker’s methodologies for shipping, testing, and deploying code quickly, you can
significantly reduce the delay between writing code and running it in production.

Docker provides the ability to package and run an application in a loosely isolated environment called
a container. The isolation and security allow you to run many containers simultaneously on a given
host. Containers are lightweight because they don’t need the extra load of a hypervisor, but run
directly within the host machine’s kernel. If we compare a Docker container with a traditional VM, we
see that Docker saves us from a Guest OS. We do not need any Guest OS in order to run or test our
application.

Docker, in general, is composed of 5 core components:

 Docker Image and Dockerfile,
 Docker Daemon,
 Docker Client,
 Docker Host,
 Docker Registry and
 Docker Hub.

We interact with Docker through Docker Client, we type any command to Docker Client that we wish
to run for manipulating containers. Docker Daemon is the component which manages the Docker
images and containers on our local machine. It manages and manipulates containers using commands
received from Docker Client.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 31

As we said that applications run in containers. We make a Docker container of our application by
making a Docker Image of our application. This Docker image is made by writing a Dockerfile.
Dockerfile is a recipe or blueprint of a Docker container. Dockerfile is composed of different
commands for making a Docker image.

Basically Docker containers can wrap a piece of software in a complete filesystem that contains
everything needed to run: code, runtime, system tools, system libraries – anything that can be installed
on a server. This guarantees that the software will always run the same, regardless of its environment.

Containers and virtual machines have similar resource isolation and allocation benefits -- but a
different architectural approach allows containers to be more portable and efficient. Docker
containers include the application and all of its dependencies - but share the kernel with other
containers, running as isolated processes in user space on the host operating system. Docker
containers are not tied to any specific infrastructure: they run on any computer, on any infrastructure,
and in any cloud.

An example of raspberry pi can be found at: https://www.raspberrypi.org/blog/docker-comes-to-
raspberry-pi/.

4. Implementation

This section provides implementation details based on decisions described in previous section. Here
we explain how we created broker with all needed functionality. The section also contains links to git
code of maven libraries that can be used for communication with the broker. Finally, the section
includes information about our proposed topology and future plans.

4.1 Overview

First we started by implementing RabbitMQ on local machine and testing basic functionality and
plugins. We added management and learn how to use it. After that we added MQTT plugin and
implemented java libraries for communication with broker. This is described in section 5.

Final version of these libraries can be found at:

 https://git.nissatech.com/presto/RabbitMQ-AMQP-message-consumer.git
 https://git.nissatech.com/presto/RabbitMQ-MQTT-message-producer.git

We use RabbitMQ amqp-client 5.2.0 for consumer and eclipse.paho.client.mqttv3 1.2.0 for producer.
We has some problem because stable version of Paho MQTT Java client has some known issue with
client disconnecting and thread exit but we workaround that
(https://github.com/eclipse/paho.mqtt.java/issues/402). We also use manual acknowledgement after
processing the message. After successful usage we implemented TLS with openssl CA on both sides.

Then we start to use Docker and put broker in container. Because of distribution part we create two
node of broker on different ports and connect them with federation. There was some problems
because federated broker act like client so we needed to add client’s certificates
(https://serverfault.com/questions/580570/rabbitmq-federation-with-ssl-client-certificates-not-
working).

https://git.nissatech.com/presto/RabbitMQ-AMQP-message-consumer.git
https://git.nissatech.com/presto/RabbitMQ-MQTT-message-producer.git
https://github.com/eclipse/paho.mqtt.java/issues/402
https://serverfault.com/questions/580570/rabbitmq-federation-with-ssl-client-certificates-not-working
https://serverfault.com/questions/580570/rabbitmq-federation-with-ssl-client-certificates-not-working

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 32

In the end we add autorecovery and start some performance testing of pilot federated broker in order
to make broker stable and check if it delivers all messages. This help us to remove some bugs and to
have stable version.

Next installation guide is optimized in way we have much preparation files and less commands.

4.2 Installation guide

Note: all commands are for Ubuntu operation system.

4.2.1 Step 1 – Install Docker

$ sudo apt-get update

$ sudo apt-get install apt-transport-https ca-certificates curl software-properties-common

$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

$ sudo apt-key fingerprint 0EBFCD88

$
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

$ sudo apt-get update

$ sudo apt-get install docker-ce

$ sudo docker --version

if last command return the number of version everything went fine.

4.2.2 Step 2 – Install Kitematic v0.17.3

This is optional step because this app is UI for Docker, all can be seen from terminal also.

$ sudo dpkg -i ./Kitematic_0.17.3_amd64.deb

$ sudo groupadd docker

$ sudo gpasswd -a ${USER} docker

$ sudo service docker restart

$ newgrp docker

$ kitematic

4.2.3 Step 3 – Prepare files for easier configuration of broker

We need next files for configuration:

 openssl.cnf - configuration file for openssl, contains where and how to generate certs.

https://download.docker.com/linux/ubuntu/gpg
https://download.docker.com/linux/ubuntu

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 33

 start.sh - creating directories and certificates autority for later use.
 Dockerfile – here we upgrade the latest official RabbitMQ image with needed plugins and

configuration.
 definitions.json - determinate structure and component of broker (create presto.cloud

exchange, default user).
 prepareServerUp.sh - script for creating server certificates for TLS comunication.
 prepareServerDown.sh - beside that, federated (down) broker also need client certificates for

comunication with other node, so this is additional part to prepareServerUp.
 nissarabbitUp.sh - run our image in container for up broker.
 nissarabbitDown.sh - run our image in container for down broker (on different ports, with

other name and preparation file).

4.2.3.1 Content of files

4.2.3.1.1 Openssl.cnf

[ca]

default_ca = testca

[testca]

dir = .

certificate = $dir/cacert.pem

database = $dir/index.txt

new_certs_dir = $dir/certs

private_key = $dir/private/cakey.pem

serial = $dir/serial

default_crl_days = 7

default_days = 365

default_md = sha256

policy = testca_policy

x509_extensions = certificate_extensions

[testca_policy]

commonName = supplied

stateOrProvinceName = optional

countryName = optional

emailAddress = optional

organizationName = optional

organizationalUnitName = optional

domainComponent = optional

[certificate_extensions]

basicConstraints = CA:false

[req]

default_bits = 2048

default_keyfile = ./private/cakey.pem

default_md = sha256

prompt = yes

distinguished_name = root_ca_distinguished_name

x509_extensions = root_ca_extensions

[root_ca_distinguished_name]

commonName = hostname

[root_ca_extensions]

basicConstraints = CA:true

keyUsage = keyCertSign, cRLSign

[client_ca_extensions]

basicConstraints = CA:false

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 34

keyUsage = digitalSignature,keyEncipherment

extendedKeyUsage = 1.3.6.1.5.5.7.3.2

[server_ca_extensions]

basicConstraints = CA:false

keyUsage = digitalSignature,keyEncipherment

extendedKeyUsage = 1.3.6.1.5.5.7.3.1

additional explanation can be found at [39].

4.2.3.1.2 start.sh

mkdir testca

cd testca/

mkdir certs private

chmod 700 private

echo 01 > serial

touch index.txt

cp ../openssl.cnf .

Create a self-signed certificate that will serve a certificate

authority (CA). The private key is located under "private".

openssl req -x509 -config openssl.cnf -newkey rsa:2048 -days 365 -out

cacert.pem -outform PEM -subj /CN=MyTestCA/ -nodes

#Encode our certificate with DER.

openssl x509 -in cacert.pem -out cacert.cer -outform DER

4.2.3.1.3 Dockerfile

#use latest official RabbitMQ image

FROM rabbitmq:latest

#add needed plugins (MQTT, Management and Federation)

RUN rabbitmq-plugins enable --offline rabbitmq_management

RUN rabbitmq-plugins enable --offline rabbitmq_mqtt

RUN rabbitmq-plugins enable --offline rabbitmq_federation

RUN rabbitmq-plugins enable --offline rabbitmq_federation_management

#install needed programs for later use in container, and creating file

system on docker container

RUN apt-get update \

 && apt-get install nano \

 && apt-get install openssl -y \

 && mkdir -p /home/ \

 && mkdir -p /home/server \

 && mkdir -p /home/testca

#add definition of broker to RabbitMQ config file

RUN echo "management.load_definitions = /etc/rabbitmq/definitions.json"

>> /etc/rabbitmq/rabbitmq.conf

#change default mqtt exchange to our

RUN echo "mqtt.exchange=presto.cloud" >> /etc/rabbitmq/rabbitmq.conf

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 35

#open ports for mqtt and management

EXPOSE 15671 15672 1883 8883

4.2.3.1.4 definitions.json

{"rabbit_version":"3.7.4",

 "users":[{

 "name":"guest",

 "password_hash":"K7TaTzB1RbNPn/1rW/YQih+zaO9uO9QwTZ8yjheKawNEY+at",

 "hashing_algorithm":"rabbit_password_hashing_sha256",

 "tags":"administrator"

 }],

 "vhosts":[{"name":"/"}],

 "permissions":[{

 "user":"guest",

 "vhost":"/",

 "configure":".*",

 "write":".*",

 "read":".*"

 }],

 "topic_permissions":[],

 "parameters":[],

 "global_parameters":[{

 "name":"cluster_name",

 "value":"rabbit@nissatech.com"

 }],

 "policies":[],

 "queues":[],

 "exchanges":[{

 "name":"presto.cloud",

 "vhost":"/",

 "type":"topic",

 "durable":true,

 "auto_delete":false,

 "internal":false,

 "arguments":{}

 }],

 "bindings":[]

}

4.2.3.1.5 prepareServerUp.sh

set -eu

Prepare the server's stuff.

cd /home/server

Generate a private RSA key.

openssl genrsa -out key.pem 2048

Generate a certificate from our private key.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 36

openssl req -new -key key.pem -out req.pem -outform PEM -subj

/CN=$(hostname)/O=server/ -nodes

Sign the certificate with our CA.

cd /home/testca

openssl ca -config openssl.cnf -in /home/server/req.pem -out

/home/server/cert.pem -notext -batch -extensions server_ca_extensions

Create a key store that will contain our certificate.

cd /home/server

openssl pkcs12 -export -out keycert.p12 -in cert.pem -inkey key.pem -

passout pass:MySecretPassword

Make files visible to broker

cd /home && chmod 755 testca/cacert.pem server/cert.pem server/key.pem

4.2.3.1.6 prepareServerDown.sh additional content

Prepare the client's stuff.

mkdir /home/client

cd /home/client

Generate a private RSA key.

openssl genrsa -out key.pem 2048

Generate a certificate from our private key.

openssl req -new -key key.pem -out req.pem -outform PEM -subj

/CN=$(hostname)/O=client/ -nodes

Sign the certificate with our CA.

cd /home/testca

openssl ca -config openssl.cnf -in /home/client/req.pem -out

/home/client/cert.pem -notext -batch -extensions client_ca_extensions

Create a key store that will contain our certificate.

cd /home/client

openssl pkcs12 -export -out key-store.p12 -in cert.pem -inkey key.pem -

passout pass:MySecretPassword

Make files visible to broker

cd /home && chmod 755 testca/cacert.pem server/cert.pem server/key.pem

client/cert.pem client/key.pem

4.2.3.1.7 Scripts for running Docker image

nissarabbitDown.sh

sudo docker run -d \

 --name="nissarabbit" \

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 37

 --hostname="nissatech.com"\

 -e RABBITMQ_NODENAME="rabbit" \

 -e RABBITMQ_DEFAULT_USER="guest" \

 -e RABBITMQ_DEFAULT_PASS="guest" \

 --publish="5671:5671" \

 --publish="5672:5672" \

 --publish="15672:15672" \

 --publish="1883:1883" \

 --publish="8883:8883" \

 --publish="4369:4369" \

 --publish="25672:25672" \

 -v

/home/nissatech/Desktop/definitions.json:/etc/rabbitmq/definitions.json

\

 -v /home/nissatech/Desktop/testca:/home/testca \

 -v /home/nissatech/Desktop/prepareServerDown.sh:/home/prepare-

server.sh \

 nrabbit

nissarabbitUp.sh

sudo docker run -d \

 --name="nissarabbit2" \

 --hostname="nissatech2.com" \

 -e RABBITMQ_NODENAME="rabbit" \

 -e RABBITMQ_DEFAULT_USER="guest" \

 -e RABBITMQ_DEFAULT_PASS="guest" \

 --publish="35671:5671" \

 --publish="35672:5672" \

 --publish="45672:15672" \

 --publish="31883:1883" \

 --publish="38883:8883" \

 --publish="34369:4369" \

 --publish="55672:25672" \

 -v

/home/nissatech/Desktop/definitions.json:/etc/rabbitmq/definitions.json

\

 -v /home/nissatech/Desktop/testca:/home/testca \

 -v /home/nissatech/Desktop/prepareServerUp.sh:/home/prepare-

server.sh \

 nrabbit

4.2.4 Step 4 – Run everything!

$ bash start.sh
#create directories

and CA.

$ sudo docker build -t nrabbit - <Dockerfile #create docker image

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 38

from latest

officialrabbitmqimag

e with defines

upgrades.

$ bash nissarabbitDown.sh
#run nrabbitin

container.

$ bash nissarabbitUp.sh
#run nrabbitin

container.

$

sudo docker exec -it nissarabbit[2]

/home/prepare-server.sh

#run prepare-server

scripts in

containers, creating

needed certs. Server

certs for both and

client certs only

for down.

$
sudo docker exec -it nissarabbit[2] nano

/etc/rabbitmq/rabbitmq.conf

#open config file

for change

add

listeners.ssl.default=5671

mqtt.listeners.ssl.default=8883

ssl_options.depth=2

ssl_options.verify=verify_peer

ssl_options.fail_if_no_peer_cert=true

ssl_options.keyfile=/home/server/key.pem

ssl_options.certfile=/home/server/cert.pem

ssl_options.cacertfile=/home/testca/cacert.p

em

ssl_options.versions.1 = tlsv1.2

ssl_options.versions.2 = tlsv1.1

ssl_options.honor_cipher_order = true

ssl_options.honor_ecc_order = true

opening TLS ports

for both protocols,

adding TLS file

paths to options and

adding limitation to

version of TLS and

force server's TLS

implementation to

dictate its

preference (cipher

suite order) to

avoid malicious

clients that

intentionally

negotiate weak

cipher suites in

preparation for

running an attack on

them.

$ sudo docker restart nissarabbit[2]

#restarting brokers

to run new

configuration

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 39

Figure 7: Management show that this ports now use SSL

4.2.5 Step 5 – add Federation do down node

#adding federation policy for exchanges which name starts with

"presto.", and use federation-upstream that we will create.

$

sudo docker exec nissarabbit rabbitmqctl set_policy --apply-to

exchanges presto-federation "^presto\." '{"federation-

upstream":"NissaPresto"}

#adding upstream with AMQP/SSL connection to address of other broker,

with needed login data and on corresponding port, with default "/"

vhost, with client certs. The upstream queue will last one hour before

it is eligible for deletion if the connection is lost.

$

sudo docker exec nissarabbit rabbitmqctl set_parameter federation-

upstream NissaPresto

'{"uri":"amqps://guest:guest@192.168.85.112:35671?cacertfile=/home/test

ca/cacert.pem&certfile=/home/client/cert.pem&keyfile=/home/client/key.p

em&verify=verify_peer&fail_if_no_peer_cert=true&server_name_indication=

nissatech2.com","ack-mode":"on-confirm","trust-user-

id":false,"expires":3600000}'

Now we can use our broker.

4.2.6 Step 6 – RabbitMQ test TLS

Create generate-client-keys.sh on with next content:

set -eu

Prepare the client's stuff.

mkdir client

cd client

Generate a private RSA key.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 40

openssl genrsa -out key.pem 2048

Generate a certificate from our private key.

openssl req -new -key key.pem -out req.pem -outform PEM -subj

/CN=$(hostname)/O=client/ -nodes

Sign the certificate with our CA.

cd ../testca

openssl ca -config openssl.cnf -in ../client/req.pem -out

../client/cert.pem -notext -batch -extensions client_ca_extensions

Create a key store that will contain our certificate.

cd ../client

openssl pkcs12 -export -out key-store.p12 -in cert.pem -inkey key.pem -

passout pass:MySecretPassword

Create a trust store that will contain the certificate of our CA.

openssl pkcs12 -export -out trust-store.p12 -in ../testca/cacert.pem -

inkey ../testca/private/cakey.pem -passout pass:rabbitstore

Make files visible to code

chmod 755 key-store.p12 trust-store.p12

$ bash generate-client-keys.sh

$ openssl s_client -connect localhost:[3]5671 -cert

client/cert.pem -key client/key.pem -CAfile testca/cacert.pem

$ openssl s_client -connect localhost:[3]8883 -cert

client/cert.pem -key client/key.pem -CAfile testca/cacert.pem

Figure 8: How test looks from terminal

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 41

4.2.7 Some additional commands for using RabbitMQ over Docker

$ sudo docker {start, restart, stop} nissarabbit

Starting, restarting and stop container.

$ sudo docker cp definitions.json

nissarabbit:/etc/rabbitmq/definitions.json

$ sudo docker diff nissarabbit

$ sudo docker exec -it nissarabbit cat

/etc/rabbitmq/enabled_plugins

First command copy definitions file to container's filesystem on path

/etc/rabbitmq. Second one shows all path of files in container

filesystem. Third shows content of file "enabled_plugins". There should

be rabbitmq_management, rabbitmq_federation,

rabbitmq_federation_management and rabbitmq_mqtt.

$ sudo docker exec nissarabbit rabbitmqctl add_user admin

<password>

$ sudo docker exec nissarabbit rabbitmqctl set_user_tags admin

administrator

$ sudo docker exec nissarabbit rabbitmqctl set_permissions -p /

admin ".*" ".*" ".*"

Creating admin user

$ sudo docker exec nissarabbit rabbitmq-plugins enable <name of

plugin>

Installing additional plugins to broker

$ sudo rabbitmqctl list_queues name messages_ready

messages_unacknowledged

Forgotten Acknowledgment

$ sudo rabbitmqctl list_{consumers, queues, exchanges, bindings,

hashes, ciphers}

Listing Consumers, Queues, Exchanges, Bindings, Hashes, Ciphers

$ sudo docker images

$ sudo docker rmi <IMAGE ID>

The first command lists all images in our docker. There is rabbitmq :

latest and our nrabbit : latest. And second command is for deleting a

specific image.

$ sudo docker ps -a

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 42

$ sudo docker rm <NAME>

The first command lists all containers in our docker. There is our

nissarabbit and nissarabbit2. And second command is for deleting a

specific container.

$ sudo docker exec nissarabbit rabbitmqctl list_exchanges name

policy | grep presto-federation

$ sudo docker exec nissarabbit rabbitmqctl eval

'rabbit_federation_status:status().'

With this we check our federation policy over exchanges and federation

status.

$ sudo apt-get autoremove --purge docker-engine

$ sudo rm -rf /var/lib/docker

Uninstall Docker

4.3 Implemented structure and future plans

We run consumer to create a queue to downnode (nissarabbit), and then run producer with the same
topic (only difference with AMQP dots and MQTT slashes) to send messages to upnode (nissarabbit2).
After upbroker gets a message, it forwards the message to downbroker through the established
connection. If there is no messages for forwarding, downbroker every 30s re-establish the connection
to check federation exchange status. Implemented structure is shown in Figure 9.

Figure 9: Implemented structure

Upnode in federation forwards every MQTT message that it receives from the producer to downnode
like AMQP message and then consumer gets it from downnode with AMQP protocol. For all
communication in broker (producer to node, node to node, node to consumer) we use TLS protocol
with our generated certificates and keys. Node to node always use TLS, but producer and consumer
can choose this optionally. In producers and consumers, we provide reconnection if something happen

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 43

with network connection and ensure persistence and delivery if some component go down. (Now we
are testing this).

We run some test like:

 Start consumer and producer, after some period of time we stop consumer and wait that
producer sends thousands of messages. Consumer after connecting again can get all messages
without any problem.

 We connect more consumer on same queue, and they work in round robin, circular one after
another.

 Run communications for 24h with both sides.
 We also try test where we restart broker during communication, and all parts can survive

restart and auto connect without any problem.

For now, we implemented a federation of two nodes, we know how to connect more of them in way we
need. Probably it will be topology where we will have one main broker and make him downnode for
more downnode brokers, so all published messages will be forwarded to this one broker, where
consumers will get and process messages. This is shown in Figure 10.

Figure 10: Proposed topology

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 44

5. Usage of the broker in the PrEstoCloud
In this section we describe the usage of the broker in the PrEstoCloud.

5.1 Message format

We agreed on the following format for a message:

 device_id: hostname (for example, on Linux OS can be found by typing hostname in terminal)
 device_type: type of the device, indicates whether it is a server, a camera, Android device
 timestamp: Unix timestamp (seconds)
 parameter_name: a name of a parameter
 parameter_value; a measured value for the parameter (in float) in that particular moment (for

the specified timestamp).

For now, list of parameters names is:

 system.cpu.system(%) - system activities on CPU
 system.cpu.user(%) - user activities on CPU
 system.cpu.iowait(%) - IO activities on CPU
 system.ram.used (GB) - used RAM
 system.ctxt.switches - number of context switches
 system.ram.free(GB) - free RAM

Here we give an example of the messages in JSON.

 {

 "device_Id": "Android_24",

 "device_type": "Android",

 "timestamp": 123456789,

 "parameter_name": "free RAM",

 "parameter_value": 2048

}

5.2 Topics

We would like to note that this is still an open issued discussed by the consortium. Here we provide
our proposals.

Our first suggestion about the topics was that there should be one topic that every device would use to
send relevant data.

Second suggestion is there should be one topic for every device, and every topic should be bound to
separate queue. Thus, the load balancing is better (every device should have its own queue). This way
it is easy to get the data for the device of interest. The list of topics is known when the list of devices is
available.

Topic name is the name of the device extracted from the netdata tool

(https://github.com/firehol/netdata/wiki), for example nissatech-Lenovo-ideapad-700-15ISK. Netdata
is a scalable, realtime monitoring tool that works on any Linux kernel. Also, there is one separate topic
“ids” that is bound to separate queue that keeps ids of all available devices.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 45

Figure 11: Topics in PrEstoCloud

This is a current and temporary solution, it can change due to requests and needs of the other
participants on the project.

Third suggestion could be that we can use the flexibility of RabbitMQ and possibility that topic can

consists of more topic levels. Each topic level is separated by a forward slash (topic level separator for

MQTT protocol). Format would be device_type/device_id/parameter_name.

Here are some examples of topics:

 laptop/nissatech-Lenovo-ideapad-ISK/system-cpu-user

 camera/camera1/system-ram-used

So for example, if one would like to have all parameters of one device, topic would be *.camera1.*

(MQTT format, dots instead of slashes).

If one would like to have values for free ram of all devices that would be #.system-ram-free. (In that

case it would be mandatory to transform names of the parameters so they do not have dots in their

names because of possible problems during conversion.

Here we give an example for a user cpu activity for all laptops: laptop.*.system-cpu-user.

5.3 An example

Here we give an example of the typical communication:

1. Firstly, every publisher sends its own id to topic “ids” when it connects to broker. If the client

already knows for which devices wants to collect the data, he does not even need to subscribe to

“ids” topic (this step can be skipped)

2. Subscriber, if interested in that topic, after subscribe creates a queue for that device

3. When queue is created, it can receive data relevant for that device

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 46

This is shown in Figure 12. In the next subsection, we show how each step has been implemented.

Figure 12: An example

5.4 Current procedure with sending data and creating topics

In this section we give some code-examples that demonstrate the key functionality related to the usage

of the broker that has been implemented.

In order the broker to be aware of which devices are available and to be capable to create a topic and a

queue for every device, one queue is created for transfer ids of the devices (topic name: ids).

//producer publishes id to topic ids

producer.publish(deviceId, "ids", 1, false);

//consumer creates a queue for ids

java.util.function.Consumer<String> consumerFunction = message -> createDataQueue(message);

messageConsumer = new MessageConsumer(brokerUri, "ids", consumerFunction, false);

Since we are implementing application that is in charge of prediction of the parameters behavior, our
application for every received id creates a separate subscriber that has its own queue and its own
topic, as already described.

//deviceId is the topic name

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 47

DataConsumer dataConsumer = new DataConsumer(brokerUri, deviceId);

dataConsumer.subscribe();

For every subscriber back up is created (we keep topics and queue names in backup file)

public void backUp(DataConsumer dataConsumer) {

 String topic = dataConsumer.getTopic();

 String queueName = dataConsumer.getQueueName();

 File dir = new File(file);

 dir.mkdir();

 try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(

 new FileOutputStream(file + topic)))) {

 writer.write(topic + "\n");

 writer.write(queueName);

 }

 catch (Exception e) {

 throw new SubscriberBackupException("Could not create back up for subscriber", e);

 }

}

If the connection fails, the subscriber automatically reconnects to topic it was connected to before the
fail.

If our application that is in charge of receiving data from the broker fails, after the new start, the back
up for every subscriber is restored. This way we can be sure that data that was in queues when the
crash happened is received. Without this back up, new queues would be created and data would be
lost.

private void createSubscribersFromBackup(File dir) {

 for (File file : dir.listFiles()) {

 DataConsumer dataConsumer = consumerDataBackup.getBackup(brokerUri, file);

 dataConsumer.subscribe();

 }

}

public DataConsumer getBackup(String brokerUri, File fileName) {

 try (BufferedReader reader = new BufferedReader(new InputStreamReader(

 new FileInputStream(fileName)))) {

 String topic = reader.readLine();

 String queueName = reader.readLine();

 DataConsumer dataConsumer = new DataConsumer(brokerUri, topic);

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 48

 dataConsumer.setQueueName(queueName);

 return dataConsumer;

 } catch (Exception e) {

 throw new SubscriberBackupException("Could not get back up for subscriber", e);

 }

}

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 49

6. Appendix 1 - RabbitMQ

The content of this section is based on [40] and [41].

RabbitMQ is an open source message-queueing software called a message broker or queue manager.
Simply said; It is a software where queues can be defined, applications may connect to the queue and
transfer a message onto it.

Figure 13: The basic architecture of a message queue

A message can include any kind of information. It could, for example, have information about a
process/task that should start on another application (that could be on another server), or it could be
just a simple text message. The queue-manager software stores the messages until a receiving
application connects and takes a message off the queue. The receiving application then processes the
message in an appropriate manner.

RabbitMQ default protocol is Advanced Message Queuing Protocol (AMQP), so the basic element of
broker is: exchanges, routes and queues. This is shown in Figure 14. In the rest of this section, the key
concpets are introduced.

Figure 14: Broker with basic elements

6.1 Exchanges and Exchange Types

Exchanges are AMQP entities where messages are sent. Exchanges take a message and route it into
zero or more queues. The routing algorithm used depends on the exchange type and rules called
bindings.

The following exchange types are supported: Direct, Topic, Header and Fanout.

6.1.1 Default Exchange

The default exchange is a direct exchange with no name (empty string) pre-declared by the broker. It
has one special property that makes it very useful for simple applications: every queue that is created
is automatically bound to it with a routing key which is the same as the queue name.

For example, when you declare a queue with the name of "search-indexing-online", the AMQP 0-9-1
broker will bind it to the default exchange using "search-indexing-online" as the routing key.
Therefore, a message published to the default exchange with the routing key "search-indexing-online"
will be routed to the queue "search-indexing-online". In other words, the default exchange makes it

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 50

seem like it is possible to deliver messages directly to queues, even though that is not technically what
is happening.

6.1.2 Direct Exchange

A direct exchange delivers messages to queues based on the message routing key. A direct exchange is
ideal for the unicast routing of messages (although they can be used for multicast routing as well).
Here is how it works:

 A queue binds to the exchange with a routing key K

 When a new message with routing key R arrives at the direct exchange, the exchange
routes it to the queue if K = R

Direct exchanges are often used to distribute tasks between multiple workers (instances of the same
application) in a round robin manner. When doing so, it is important to understand that, in AMQP 0-9-
1, messages are load balanced between consumers and not between queues.

A direct exchange can be represented graphically as follows:

Figure 15: Direct exchange routing

6.1.3 Fanout Exchange

A fanout exchange routes messages to all of the queues that are bound to it and the routing key is
ignored. If N queues are bound to a fanout exchange, when a new message is published to that
exchange a copy of the message is delivered to all N queues. Fanout exchanges are ideal for the
broadcast routing of messages.

A fanout exchange can be represented graphically as follows:

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 51

Figure 16: Fanout exchange routing

6.1.4 Topic Exchange

This has been explained in 3.2.

6.1.5 Headers Exchange

A headers exchange is designed for routing on multiple attributes that are more easily expressed as
message headers than a routing key. Headers exchanges ignore the routing key attribute. Instead, the
attributes used for routing are taken from the headers attribute. A message is considered matching if
the value of the header equals the value specified upon binding.

It is possible to bind a queue to a headers exchange using more than one header for matching. In this
case, the broker needs one more piece of information from the application developer, namely, should it
consider messages with any of the headers matching, or all of them? This is what the "x-match"
binding argument is for. When the "x-match" argument is set to "any", just one matching header value
is sufficient. Alternatively, setting "x-match" to "all" mandates that all header pairs (key, value) must
match.

Headers exchanges can be looked upon as "direct exchanges on steroids". Because they route based on
header values, they can be used as direct exchanges where the routing key does not have to be a string;
it could be an integer or a hash (dictionary) for example.

Header exchange is ideal for content based publish/subscriber. In way that our producer can put key-
value (KV) pairs in the header of the message that describe the content. So consumer can receive only
needed messages.

But because of MQTT we need to use TOPIC exchange!

We can make some connection so MQTT sends to TOPIC exchange, that exchange forward everything
to HEADER exchange that is upstream and then consumer collect data from federated exchange by
header filtering. This will be consider for second release of this deliverable.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 52

6.2 Queues

6.2.1 Queue Names

Queue names starting with "amq." are reserved for internal use by the broker. Attempts to declare a
queue with a name that violates this rule will result in a channel-level exception with reply code 403
(ACCESS_REFUSED).

6.2.2 Queue Durability

Durable queues are persisted to disk and thus survive broker restarts. Queues that are not durable are
called transient. Not all scenarios and use cases mandate queues to be durable.

Durability of a queue does not make messages that are routed to that queue durable. If broker is taken
down and then brought back up, durable queue will be re-declared during broker startup, however,
only persistent messages will be recovered.

6.3 Routing

6.3.1 Port Access

SELinux, and similar mechanisms may prevent RabbitMQ from binding to a port. When that happens,
RabbitMQ will fail to start. Firewalls can prevent nodes and CLI tools from communicating with each
other. You should make sure the following ports can be opened:

 4369: epmd, a peer discovery service used by RabbitMQ nodes and CLI tools

 5672, 5671: used by AMQP 0-9-1 and 1.0 clients without and with TLS

 25672: used by Erlang distribution for inter-node and CLI tools communication and is

allocated from a dynamic range (limited to a single port by default, computed as AMQP port +

20000). See networking guide for details.

 35672-35682: used by CLI tools (Erlang distribution client ports) for communication with
nodes and is allocated from a dynamic range (computed as Erlang dist port + 10000 through

dist port + 10010). See networking guide for details.

 15672: HTTP API clients and rabbitmqadmin (only if the management plugin is enabled)

 61613, 61614: STOMP clients without and with TLS (only if the STOMP plugin is enabled)

 1883, 8883: (MQTT clients without and with TLS, if the MQTT plugin is enabled

 15674: STOMP-over-WebSockets clients (only if the Web STOMP plugin is enabled)

 15675: MQTT-over-WebSockets clients (only if the Web MQTT plugin is enabled)

It is possible to configure RabbitMQ to use different ports and specific network interfaces.

http://erlang.org/doc/man/epmd.html
https://www.rabbitmq.com/networking.html
http://www.rabbitmq.com/networking.html
https://www.rabbitmq.com/management.html
https://www.rabbitmq.com/management-cli.html
https://www.rabbitmq.com/management.html
https://stomp.github.io/stomp-specification-1.2.html
https://www.rabbitmq.com/stomp.html
http://mqtt.org/
https://www.rabbitmq.com/mqtt.html
https://www.rabbitmq.com/web-stomp.html
https://www.rabbitmq.com/web-mqtt.html
https://www.rabbitmq.com/configure.html
https://www.rabbitmq.com/networking.html

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 53

7. Appendix 2 - Distributed RabbitMQ brokers
The content of this section is based on [14] and [42].

AMQP and the other messaging protocols supported by RabbitMQ via plug-ins (e.g. STOMP), are (of
course) inherently distributed - it is quite common for applications from multiple machines to connect
to a single broker, even across the internet.

Sometimes however it is necessary or desirable to make the RabbitMQ broker itself distributed. There
are three ways in which to accomplish that: with clustering, with federation, and using the shovel. This
is described below.

Note that you do not need to pick a single approach - you can connect clusters together with
federation, or the shovel, or both.

7.1 Bindings

Bindings are rules that exchanges use (among other things) to route messages to queues. To instruct
an exchange E to route messages to a queue Q, Q has to be bound to E. Bindings may have an optional
routing key attribute used by some exchange types. The purpose of the routing key is to select certain
messages published to an exchange to be routed to the bound queue. In other words, the routing key
acts like a filter.

Having this layer of indirection enables routing scenarios that are impossible or very hard to
implement using publishing directly to queues and also eliminates certain amount of duplicated work
application developers have to do.

If AMQP message cannot be routed to any queue (for example, because there are no bindings for the
exchange it was published to) it is either dropped or returned to the publisher, depending on message
attributes the publisher has set.

7.2 Clustering

Clustering connects multiple machines together to form a single logical broker. Communication is via
Erlang message-passing, so all nodes in the cluster must have the same Erlang cookie. The network
links between machines in a cluster must be reliable, and all machines in the cluster must run the same
versions of RabbitMQ and Erlang.

Virtual hosts, exchanges, users, and permissions are automatically mirrored across all nodes in a
cluster. Queues may be located on a single node, or mirrored across multiple nodes. A client
connecting to any node in a cluster can see all queues in the cluster, even if they are not located on that
node.

Typically you would use clustering for high availability and increased throughput, with machines in a
single location.

7.3 Federation

The content of this section is based on [8].

Federation allows an exchange or queue on one broker to receive messages published to an exchange
or queue on another (the brokers may be individual machines, or clusters). Communication is via
AMQP (with optional TLS), so for two exchanges or queues to federate they must be granted
appropriate users and permissions.

Federated exchanges are connected with one way point-to-point links. By default, messages will only
be forwarded over a federation link once, but this can be increased to allow for more complex routing

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 54

topologies. Some messages may not be forwarded over the link; if a message would not be routed to a
queue after reaching the federated exchange, it will not be forwarded in the first place.

Federated queues are similarly connected with one way point-to-point links. Messages will be moved
between federated queues an arbitrary number of times to follow the consumers.

Typically you would use federation to link brokers across the internet for pub/sub messaging and
work queueing.

7.4 The Shovel

Connecting brokers with the shovel is conceptually similar to connecting them with federation.
However, the shovel works at a lower level. Whereas federation aims to provide opinionated
distribution of exchanges and queues, the shovel simply consumes messages from a queue on one
broker, and forwards them to an exchange on another. Typically you would use the shovel to link
brokers across the internet when you need more control than federation provides. Dynamic shovels
can also be useful for moving messages around in an ad-hoc manner on a single broker.

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 55

8. Appendix 3 - Install and use RabbitMQ on Ubuntu

8.1 Step 1 – Install Erlang

$ wget https://packages.erlang-solutions.com/erlang-solutions_1.0_all.deb

$ sudo dpkg -i erlang-solutions_1.0_all.deb

$ sudo apt-get update

$ sudo apt-get install erlang erlang-nox

$ erl -eval 'erlang:display(erlang:system_info(otp_release)), halt().' -noshell

8.2 Step 2 – Install RabbitMQ Server

$ echo 'deb http://www.rabbitmq.com/debian/ testing main' | sudo tee
/etc/apt/sources.list.d/rabbitmq.list

$ wget -O- https://www.rabbitmq.com/rabbitmq-release-signing-key.asc | sudo apt-key add -

$ sudo apt-get update

$ sudo apt-get install rabbitmq-server

8.3 Step 3 – Manage RabbitMQ Service

$ sudo systemctl enable rabbitmq-server

$ sudo systemctl start rabbitmq-server

localhost:5672 AMQP Connection

$ sudo systemctl stop rabbitmq-server

8.4 Step 4 – Create Admin User in RabbitMQ

$ sudo rabbitmqctl add_user admin <password>

$ sudo rabbitmqctl set_user_tags admin administrator

$ sudo rabbitmqctl set_permissions -p / admin ".*" ".*" ".*"

8.5 Step 5 – Setup RabbitMQ Web Management Console

$ sudo rabbitmq-plugins enable rabbitmq_management

localhost:15672 username:"guest" password:"guest" or created admin

https://packages.erlang-solutions.com/erlang-solutions_1.0_all.deb
http://www.rabbitmq.com/debian/
https://www.rabbitmq.com/rabbitmq-release-signing-key.asc

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 56

http://localhost:15672/cli - download rabbitmqadmin

8.6 Step 6 – Run Code from Intellj

8.7 Step 7 - Enabling MQTT Plugin- http://www.rabbitmq.com/mqtt.html

$ sudo rabbitmq-plugins enable rabbitmq_mqtt

localhost:1883 MQTT Connection

8.8 Uninstall

$ sudo apt-get purge --auto-remove rabbitmq-server

$ sudo apt-get purge --auto-remove erlang

More information can be found at:
 https://www.howtoinstall.co/en/ubuntu/xenial/rabbitmq-server?action=remove
 https://www.howtoinstall.co/en/ubuntu/xenial/erlang?action=remove

8.9 Additional commands

8.9.1 Listing Consumers, Queues, Exchanges, Bindings, Hashes, Ciphers.

$ sudo rabbitmqctl list_{ consumers, queues, exchanges, bindings, hashes, ciphers}

8.9.2 Forgotten Acknowledgment

$ sudo rabbitmqctl list_queues name messages_ready messages_unacknowledged

More information can be found at:
 http://www.rabbitmq.com/cli.html
 https://www.rabbitmq.com/rabbitmqctl.8.html

http://localhost:15672/cli
http://www.rabbitmq.com/mqtt.html
https://www.howtoinstall.co/en/ubuntu/xenial/rabbitmq-server?action=remove
https://www.howtoinstall.co/en/ubuntu/xenial/erlang?action=remove
http://www.rabbitmq.com/cli.html
https://www.rabbitmq.com/rabbitmqctl.8.html

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 57

References
[1] http://activemq.apache.org/

[2] http://activemq.apache.org/security.html

[3] http://opensourceforu.com/2015/12/an-introduction-to-apache-activemq/

[4] http://activemq.apache.org/getting-started.html

[5] https://activemq.apache.org/artemis/docs/1.0.0/security.html

[6] http://activemq.apache.org/protocols.html

[7] http://activemq.apache.org/how-do-distributed-queues-work.html

[8] http://activemq.apache.org/clustering.html

[9] http://activemq.apache.org/cross-language-clients.html

[10] http://activemq.apache.org/topologies.html

[11] https://www.rabbitmq.com/

[12] https://www.rabbitmq.com/access-control.html

[13] https://www.rabbitmq.com/protocols.html

[14] https://www.rabbitmq.com/distributed.html

[15] https://www.rabbitmq.com/devtools.html

[16] https://www.rabbitmq.com/monitoring.html

[17] http://www.rabbitmq.com/management.html

[18] https://www.rabbitmq.com/authentication.html

[19] https://www.rabbitmq.com/tutorials/tutorial-six-java.html

[20] https://docs.wso2.com/display/EI610/Remote+Procedure+Call%28RPC%29+with+RabbitMQ

[21] http://activemq.apache.org/how-should-i-implement-request-response-with-jms.html

[22] https://access.redhat.com/documentation/en-US/Fuse_ESB/4.4.1/html-
single/ActiveMQ_Security_Guide/index.html

[23] https://www.rabbitmq.com/how.html#cloud-configurations

[24] https://www.rabbitmq.com/resources/RabbitMQ_MessagingInTheCloud_VMworld_2010_MS.pdf

[25] https://kafka.apache.org/documentation/

[26] https://www.rabbitmq.com/mqtt.html#custom-exchanges

[27] https://www.rabbitmq.com/tutorials/tutorial-five-java.html

[28] https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices

[29] https://www.rabbitmq.com/tutorials/amqp-concepts.html

[30] http://www.rabbitmq.com/api-guide.html#recovery

[31] https://www.rabbitmq.com/ssl.html

[32] http://searchsecurity.techtarget.com/definition/Transport-Layer-Security-TLS

[33] https://www.rabbitmq.com/federation.html

[34] https://www.rabbitmq.com/federated-exchanges.html

[35] https://www.rabbitmq.com/federated-queues.html

http://activemq.apache.org/
http://activemq.apache.org/security.html
http://opensourceforu.com/2015/12/an-introduction-to-apache-activemq/
http://activemq.apache.org/getting-started.html#GettingStarted-AdditionalResources
https://activemq.apache.org/artemis/docs/1.0.0/security.html
http://activemq.apache.org/protocols.html
http://activemq.apache.org/how-do-distributed-queues-work.html
http://activemq.apache.org/clustering.html
http://activemq.apache.org/cross-language-clients.html
http://activemq.apache.org/topologies.html
https://www.rabbitmq.com/
https://www.rabbitmq.com/access-control.html
https://www.rabbitmq.com/protocols.html
https://www.rabbitmq.com/distributed.html
https://www.rabbitmq.com/devtools.html
https://www.rabbitmq.com/monitoring.html
http://www.rabbitmq.com/management.html
https://www.rabbitmq.com/authentication.html
https://www.rabbitmq.com/tutorials/tutorial-six-java.html
https://docs.wso2.com/display/EI610/Remote+Procedure+Call(RPC)+with+RabbitMQ
http://activemq.apache.org/how-should-i-implement-request-response-with-jms.html
https://access.redhat.com/documentation/en-US/Fuse_ESB/4.4.1/html-single/ActiveMQ_Security_Guide/index.html
https://access.redhat.com/documentation/en-US/Fuse_ESB/4.4.1/html-single/ActiveMQ_Security_Guide/index.html
https://www.rabbitmq.com/how.html#cloud-configurations
https://www.rabbitmq.com/resources/RabbitMQ_MessagingInTheCloud_VMworld_2010_MS.pdf
https://kafka.apache.org/documentation/
https://www.rabbitmq.com/mqtt.html#custom-exchanges
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices
https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/api-guide.html#recovery
https://www.rabbitmq.com/ssl.html
http://searchsecurity.techtarget.com/definition/Transport-Layer-Security-TLS
https://www.rabbitmq.com/federation.html
https://www.rabbitmq.com/federated-exchanges.html
https://www.rabbitmq.com/federated-queues.html

PrEstoCloud GA 732339 Deliverable
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

 58

[36] https://www.rabbitmq.com/federation-reference.html#upstreams

[37] https://www.rabbitmq.com/uri-query-parameters.html

[38] https://social.technet.microsoft.com/wiki/contents/articles/34082.understanding-docker-for-
absolute-beginners.aspx

[39] https://github.com/openssl/openssl/blob/master/apps/openssl.cnf

[40] https://www.rabbitmq.com/tutorials/amqp-concepts.html

[41] https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-
rabbitmq.html

[42] https://www.rabbitmq.com/clustering-ssl.html

[43] https://docs.docker.com/engine/docker-overview/

Tutorials

 https://www.rabbitmq.com/tutorials/tutorial-one-java.html
 https://www.youtube.com/watch?v=deG25y_r6OY
 https://www.youtube.com/watch?v=XjuiZM7JzPw
 https://dzone.com/articles/connect-rabbitmq-using-scala
 https://www.playframework.com/modules/rabbitmq-0.0.9/home
 http://activemq.apache.org/hello-world.html
 http://tech.lalitbhatt.net/2014/08/activemq-introduction.html
 https://www.youtube.com/watch?v=oaegBVoVvlQ
 https://www.youtube.com/watch?v=3T-lDT-vALE
 https://www.playframework.com/modules/camel-0.2/home
 https://www.youtube.com/watch?v=OVXnwZ3gbD4&list=PL7aRHNGCnFZUF2dH7J7bqeU9-

GDdiHF-R

Additional material used for this deliverable:

 https://stackoverflow.com/questions/15150133/jms-and-amqp-rabbitmq
 https://stackshare.io/stackups/activemq-vs-kafka-vs-rabbitmq
 https://www.ekito.fr/people/mqtt-benchmarks-rabbitmq-activemq/
 http://vasters.com/blog/From-MQTT-to-AMQP-and-back/
 http://activemq.apache.org/features.html
 http://activemq.apache.org/faq.html
 http://activemq.apache.org/how-do-i-preserve-order-of-messages.html
 https://activemq.apache.org/maven/apidocs/overview-summary.html

https://www.rabbitmq.com/federation-reference.html#upstreams
https://www.rabbitmq.com/uri-query-parameters.html
https://social.technet.microsoft.com/wiki/contents/articles/34082.understanding-docker-for-absolute-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/34082.understanding-docker-for-absolute-beginners.aspx
https://github.com/openssl/openssl/blob/master/apps/openssl.cnf
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.rabbitmq.com/clustering-ssl.html
https://docs.docker.com/engine/docker-overview/
https://www.rabbitmq.com/tutorials/tutorial-one-java.html
https://www.youtube.com/watch?v=deG25y_r6OY
https://www.youtube.com/watch?v=XjuiZM7JzPw
https://dzone.com/articles/connect-rabbitmq-using-scala
https://www.playframework.com/modules/rabbitmq-0.0.9/home
http://activemq.apache.org/hello-world.html
http://tech.lalitbhatt.net/2014/08/activemq-introduction.html
https://www.youtube.com/watch?v=oaegBVoVvlQ
https://www.youtube.com/watch?v=3T-lDT-vALE
https://www.playframework.com/modules/camel-0.2/home
https://www.youtube.com/watch?v=OVXnwZ3gbD4&list=PL7aRHNGCnFZUF2dH7J7bqeU9-GDdiHF-R
https://www.youtube.com/watch?v=OVXnwZ3gbD4&list=PL7aRHNGCnFZUF2dH7J7bqeU9-GDdiHF-R
https://stackoverflow.com/questions/15150133/jms-and-amqp-rabbitmq
https://stackshare.io/stackups/activemq-vs-kafka-vs-rabbitmq
https://www.ekito.fr/people/mqtt-benchmarks-rabbitmq-activemq/
http://vasters.com/blog/From-MQTT-to-AMQP-and-back/
http://activemq.apache.org/features.html
http://activemq.apache.org/faq.html
http://activemq.apache.org/how-do-i-preserve-order-of-messages.html
https://activemq.apache.org/maven/apidocs/overview-summary.html

