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Executive	Summary	
	

This	 deliverable	 reports	 on	 the	 work	 performed	 under	 Task	 3.5	 with	 respect	 to	 the	 development	 of	 a	
context	analysis	engine.	The	engine	is	part	of	the	Meta	management	layer	of	the	PrEstoCloud	architecture,	
which	mainly	provides	valuable	 input	to	the	PrEstoCloud	Situation	Detection	Mechanism	(D	5.1)	which	 in	
turn	will	 support	 the	Control	 layer	perform	adaptation	of	 cloud	 resources	Manager.	The	context	analysis	
engine	 is	able	to	detect	and	process	the	context	of	devices	at	the	extreme	edge	of	the	network	and	thus	
greatly	influences	the	recommended	adaptations	of	the	processing	topology,	especially	at	the	edge.		

The	context	analysis	engine	provides	a	mechanism	to	detect	 the	state	of	 the	processing	resources	at	 the	
extreme	edge	and	provides	 to	 communicating	 components	an	abstracted	view	of	 this	data.	Moreover,	 it	
implements	a	Context	Model	to	describe	information	it	receives	from	all	extreme	edge	devices	through	the	
PrEstoCloud	Communication	Broker.	 The	 retrieved	 information	 is	 continuously	 filtered	and	normalized	 in	
order	 to	 reassure	 that	 it	 can	 be	 correctly	 processed.	 Finally	 the	 enhanced	 context	 of	 the	 devices	 is	
published	to	the	Communication	broker,	while	saving	intermediate	results	on	scalable	data	stores.	

The	Mobile	Context	Analyser	follows	the	line	of	thought	adopted	by	modern	research	in	the	extensive	field	
of	 context	 sensing	 and	 processing,	 and	 provides	 a	 scalable,	 containerized	 solution	 to	 retrieve	 basic	 and	
derived	 information	 for	 the	 devices	 at	 the	 edge	 of	 the	 network.	 It	 is	 also	 extensible	 and	 modular,	
permitting	the	integration	of	new	components	to	the	existing	if	a	specific	type	of	processing	is	required	for	
some	kinds	of	data.	In	order	to	aid	attempt	to	comprehend	and	extend	the	engine,	both	the	conceptual	and	
concrete	architectures	of	the	module	are	provided,	mapping	sub-components	to	specific	applications.	This	
document	 also	 contains	 a	walkthrough	 of	 the	 application	 of	 the	 engine	 in	 a	 device	monitoring	 scenario,	
illustrating	the	process	of	context	inferencing.		
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1. Introduction	

1.1 Scope	
	

This	work	describes	the	methodology	and	the	architecture	followed	and	implemented,	to	create	a	context	
analysis	software	component,	mainly	targeted	(but	not	limited)	to	devices	functioning	in	the	extreme	edge	
of	 the	 network,	 and	 providing	 information	 on	 the	 current	 health	 status	 of	 edge	 devices	 as	well	 as	 their	
capability	to	perform	some	processing	tasks.	The	information	published	on	the	PrEstoCloud	Broker	will	be	
used	 by	 other,	 higher-level	 components	 of	 the	 Meta-management	 layer	 to	 detect	 situations	 requiring	
adaptation	as	well	as	to	improve	the	adaptation	recommendation	itself.		

The	need	to	be	able	to	direct	processing	tasks	not	only	from	the	edge	to	the	cloud,	but	also	in	the	reverse	
direction,	presents	the	need	for	a	specialized	software	component	to	monitor	 the	state	of	devices	at	 the	
extreme	 edge	 of	 the	 network,	 understand	 it,	 and	 provide	 decision	 making	 components	 with	 all	 data	
required	 to	 propose	 an	 efficient	 adaptation	 of	 the	 processing	 topology.	 The	 Mobile	 Context	 Analyzer	
undertakes	 this	 responsibility,	and	 further	provides	 to	other	components	of	 the	PrEstoCloud	architecture	
an	abstraction	layer	over	edge	devices.		

Furthermore,	the	Mobile	Context	Analyzer	 is	an	active	component	 in	the	sense	that	 it	can	learn	from	the	
past	 behaviour	 of	 a	 device	 type/user	 or	 a	 group	 of	 device	 types/users	 and	 therefore	 can	 improve	 the	
quality	 of	 the	 interpretation	 it	 performs	 on	 raw	 data.	 Additionally,	 the	 approaches	 used	 to	 enrich	 and	
process	raw	data	are	not	hard-wired	in	the	core	logic	of	the	Analyzer	module,	but	can	be	further	improved	
and	extended	should	this	be	desirable.	

	

1.2 Relation	to	PrEstoCloud	Tasks	
	

The	Mobile	Context	Analyzer	component	has	been	defined	 in	 the	description	of	work	of	 the	PrEstoCloud	
project	as	part	of	Task	3.5.	It	materialises	a	system	able	to	sense	and	detect	context	in	the	way	the	latter	
was	defined	in	Deliverable	D2.1	(Scientific	and	Technological	State-of-the-Art	analysis)	and	formulated	as	a	
functional	requirement	in	Deliverable	D2.2	(High-level	requirements	analysis	for	the	PrEstoCloud	platform).	
The	component	also	adheres	to	the	foundations	set	for	the	entire	PrEstoCloud	topology	in	deliverable	D2.3	
(PrEstoCloud	 Conceptual	 Architecture).	 The	 Mobile	 Context	 Analyser	 receives	 input	 from	 the	
Communication	broker	for	real-time	data	streams	and	processes	it	taking	into	account	the	specifications	of	
the	communication	format	developed	in	Deliverable	D2.4	(Format	and	procedures	for	plugging	in	real-time	
data	streams).		

The	Mobile	Context	Analyser	 is	 itself	 a	primary	 input	 for	 the	Situation	Detection	Mechanism	 (Task	T5.1),	
while	 it	 also	 produces	 information	 required	 for	 the	 proper	 operation	 of	 the	 Resources	 Adaptation	
Recommender	(Task	T5.2).	Information	gathered	and	processed	by	the	component	is	also	retrieved	by	the	
Autonomic	Data-Intensive	Application	Manager	(Task	T4.2)	and	the	Application	Placement	and	Scheduling	
Controller	(Task	T4.4),	which	use	 it	 in	order	to	direct	the	processing	of	application	fragments	to	the	edge	
when	this	is	deemed	appropriate.	

	

1.3 Document	Structure		
	

The	 deliverable	 is	 structured	 as	 follows:	 	 Section	 2	 presents	 the	 related	work	 already	 performed	 in	 the	
general	area	of	Context	sensing	and	processing.	Section	3	includes	our	approach	on	the	development	of	the	
PrEstoCloud	 Context	Model.	 Section	 4	 presents	 the	 methods	 and	 the	 technologies	 used	 in	 our	 Context	
analysis	approach	through	an	 illustrative	example.	Last,	 in	Section	5	we	formulate	our	conclusions	on	the	
approach	and	the	development	of	the	component.	
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2. Related	Works		
Interest	 in	 mobile	 context	 sensing	 has	 grown	 proportionally	 to	 the	 vast	 increase	 in	 the	 number	 of	
computing	 and	 IoT	 devices	 that	 are	 literally	 attached	 to	 the	 everyday	 life	 of	 individuals.	 Situations	 and	
entities	that	comprise	the	environment	are	collectively	termed	context	(Pejovic	&	Musolesi,	2015).	Context	
may	 have	 numerous	 aspects:	 geographical,	 physical,	 social,	 temporal,	 or	 organisational,	 to	 name	 a	 few.	
Context	sensing	aims	at	bridging	physical	stimuli	sensed	by	the	device’s	sensors,	also	known	as	modalities,	
and	high	level	concepts	that	describe	a	context.	Various	mobile	devices	are	perceptive	devices	theoretically	
capable	of	inferring	the	surrounding	context.	

Context	sensing	has	been	enabled	by	two	factors.	First,	mobile	computing	devices	such	as	smartphones	are	
provisioned	with	sophisticated	sensors,	as	well	as	with	communication	and	computation	hardware	such	as	
GPS,	 accelerometer,	 gyroscope,	 proximity	 and	 light	 sensors,	 microphones	 and	 cameras.	 Multi-core	
processors	and	sizable	memory	allow	mobile	devices	to	locally	handle	a	large	amount	of	data	coming	from	
these	senses	and	extract	meaningful	situation	descriptors,	while	a	range	of	communication	interfaces,	such	
as	WiFi,	Bluetooth,	4G/LTE,	and	a	near-field	communication	(NFC)	interface,	allow	distributed	computation	
and	remote	data	storage.	The	second	key	factor	is	the	increasingly	ubiquitous	and	personal	usage	of	mobile	
computing	devices.		

Context	inference	involves	stages	such	as	sensing,	classification	and	prediction	(Pejovic	&	Musolesi,	2015).	
Such	stages	are	needed	to	transform	raw	data	to	high-level	contextual	cues.	Sensing	is	the	first	stage,	which	
aims	to	be	the	entry	point	to	physical	context-generating	devices.	A	subsequent	step	is	feature	extraction	
which	 transforms	 raw	 data	 to	 a	 form	 which	 can	 be	 used	 for	 context	 inference.	 A	 final	 step	 is	 context	
modelling	which	 focuses	on	 the	creation	of	models	 that	 relate	relevant	high	 level	contextual	 information	
with	collected	data	features.		

2.1 Context	sensing	
Mobile	sensors	can	reveal	high	level	information	about	the	device	internal	state.	A	single	sensor	modality	is	
seldom	 sufficient	 for	 inferring	 the	 context	 in	which	 a	 device	 is.	 In	 addition,	multimodal	 information	 can	
offset	 the	 ambiguities	 that	 arise	 when	 single	 sensor	 data	 are	 used	 for	 inference	 (Maurer	 et	 al.,	 2006).	
Multimodal	 information	 can	 uncover	 relationships	 previously	 unknown	 or	 difficult	 to	 confirm	 through	
conventional	 approaches.	 For	 example,	 app	 processing	 can	 be	 correlated	with	 user’s	 location	 or	 activity	
(Puiatti	et	al.,	2011).		

Mobile	sensing	is	subject	to	constraints	coming	from	the	devices’	hardware	restrictions.	Frequent	sensing	
of	different	modalities	and	collaboration	of	multiple	agents	are	likely	to	be	necessary	for	accurate	context	
inferencing,	 emphasizing	 the	 need	 for	 resource-efficient	 mobile	 sensing	 solutions.	 Energy-efficient	
operation,	 processing,	 storage	 and	 communication	 constraints	 are	 the	 most	 common	 practical	 mobile	
sensing	challenges.	In	Table	1	we	summarise	the	state-of-the-art	solutions	to	address	these	issues.	Energy	
issues	 are	 exacerbated	 by	 the	 design	 of	 mobile	 sensors	 as	 occasionally	 used	 features,	 rather	 than	
constantly	 sampled	 sensors.	 Two	 popular	 means	 of	 reducing	 the	 energy	 consumption	 are	 adaptive	
sampling,	 i.e.,	 sampling	 less	often,	and,	 in	 the	case	of	a	device	with	multiple	 sensors,	powering	 them	on	
hierarchically,	 i.e.,	 preferring	 low-power	 sensors	 to	 more	 power	 hungry	 ones.	 Adaptive	 sampling	 and	
hierarchical	sensing	are	not	the	only	means	of	reducing	energy	usage.	The	inherent	structure	of	the	context	
inference	 problem	 can	 also	 be	 used	 to	 improve	 sensing	 efficiency.	 This	 is	 the	 main	 idea	 behind	 the	
Acquisitional	 Context	 Engine	 (ACE)	 proposed	 in	 (Nath,	 2012).	 Here,	 Nath	 develops	 a	 speculation-based	
sensing	engine	that	learns	associative	rules	among	contexts,	an	example	of	which	would	be	“when	a	user	
state	is	driving,	his	location	is	not	at	home”.	When	a	context-sensitive	application	needs	to	know	if	a	user	is	
at	 home	 or	 not,	 it	 contacts	 ACE	 that	 acts	 as	 a	 middle	 layer	 between	 sensors	 and	 the	 application.	 ACE	
initially	probes	a	less	energy	costly	sensor	–	accelerometer	–	and	only	if	the	sensed	data	does	not	imply	that	
a	user	is	driving,	it	turns	the	GPS	on	and	infers	the	actual	user’s	location.	
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2.2 Context	Modelling	
(Rivero-Rodriguez,	Pileggi	&	Nykänen,	2016)	argue	that	there	exists	no	universal	model	for	context	related	
data.	(Strang	&	Linnhoff-Popien,	2004)	present	key-value,	markup	scheme,	graphical,	object-oriented,	logic-
based	and	ontology-based	models	for	modelling	context.	Ontologies	have	been	user	extensively	to	model	
context,	 providing	 advantages	 such	 as	 information	 alignment,	 and	 the	 ability	 to	 deal	with	 incomplete	 or	
partially	 understood	 information.	 The	W3C	 Semantic	 Sensor	 Network	 (SSN)	 ontology	 was	 developed	 by	
reviewing	17	existing	sensor	ontologies	(Lefort,	Henson	and	Taylor	2011,	Compton	et	al.,	2012),	also	aligned	
with	 the	general	DOLCE	Ultra	Lite	upper	ontology	providing	concepts	 such	as	Physical	Object,	Event,	etc.	
Other	 ontologies	 acknowledge	 a	more	 generalized	 logical	 context,	 such	 as	 the	 Service-Oriented	Context-
Aware	Middleware	(SOCAM)	architecture,	which	provides	efficient	infrastructure	support	for	building	more	
complex	Context-aware	Services	 in	pervasive	computing	environments	(Gu,	Hung	Keng	&	Da	Qing,	2005).	
SOCAM	 also	 acknowledges	 the	 needs	 of	 using	 a	 two-level	 information	 architecture:	 general	 contextual	
information	 is	 described	 using	 SOCAM	 ontology,	 while	 more	 application-specific	 concepts	 use	 domain-
specific	ontologies.	 In	previous	work,	we	developed	our	own	ontology-based	context	model	 for	 real-time	
processing	systems	(Verginadis	et	al.,	2015).	

The	 first	 challenge	 in	 context	modelling	 is	 the	 identification	of	 those	modalities	of	 raw	data	 that	are	 the	
most	descriptive	of	the	context.	 Interdisciplinary	efforts	and	domain	knowledge	are	crucial	 in	this	step.	A	
subsequent	step	is	the	choice	of	the	method	for	representing	context	data.	Distinctive	properties	extracted	
from	the	data	are	called	features.	Typical	features	used	in	selected	context	domains	are	 listed	in	Table	1.	
Modality	 and	 feature	 selection	 impact	 the	 rest	 of	 the	 context	 inference;	 a	 careful	 consideration	 at	 this	
stage	of	 the	process	 can	help	 improve	 classification	accuracy	or	 reduce	 the	 computational	 complexity	of	
the	learning	process.	As	mobile	sensing	matures	the	variety	of	context	types	that	researchers	strive	to	infer	
broadens.	 In	 addition,	 the	number	of	 sensors	 available	on	 the	 smartphone	 increases	 steadily.	 Therefore,	
identifying	and	quantifying	the	strength	of	a	link	between	a	domain	and	a	modality	(or	a	feature)	emerges	
as	an	important	research	direction	in	mobile	sensing.	

Table	1.	Context	domains	and	characteristic	features	(adopted	from	Pejovic	&	Musolesi,	2015)	

Domain	 Characteristic	Features	

Audio	and	speech	recognition	 Sound	spectral	entropy,	zero	crossing	rate,	low	energy	frame	rate,	
spectral	flux,	spectral	rolloff,	bandwidth,	phase	deviation	(Lane	et	
al.,	2010)	

Teager	Energy	Operator	(TEO),	pitch	range,	jitter	and	standard	
deviation,	spectral	centroid,	speaking	rate,	high	frequency	ratio	
(Lu	et	al.,	2012)	

Running	average	of	amplitude,	sum	of	absolute	differences	
[Krause	et	al.	2006]	

Perceptual	linear	predictive	(PCP)	coefficients	(Rachuri	et	al.,	
2011)	

Mean	and	standard	deviation	of	DFT	power	(Miluzzo	et	al.,	2008)	

Location	

	

Days	on	which	any	cell	tower	was	contacted,	days	on	which	a	
specific	tower	is	contacted,	contact	duration,	events	during	
work/home	hours	(Isaacman	et	al.,	2011)	

Tanimoto	Coefficient	of	WiFi	fingerprints	(Chon	et	al.,	2012)	

Eigenbehaviors	-	vectors	of	time-place	pairs	(Eagle	&	Pentland,	
2009)	

Hour	of	day,	latitude,	longitude,	altitude,	social	ties	(De	Domenico	
et	al.,	2012)	
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2.3 Context	Classification	
Many	 machine	 learning	 methods	 have	 been	 used	 to	 transfer	 sensor	 data	 into	 mathematical	
representations	of	a	mobile	device	environment.	Table	2	 lists	 indicative	mobile	 context	domains	and	 the	
corresponding	machine	 learning	methods	 that	 have	 been	 applied	 to	 classify	 context.	 Indicative	methods	
used	 by	 scholars	 in	 Context	 Classification	 include	 Hidden	 Markov	 Models,	 Markov	 Chains,	 Bayesian	
Networks,	Nearest	Neighbour,	Time	Series,	Threshold	based	Learning	and	Gaussian	Mixture	Models.	Scaling	
up	imposes	novel	challenges	with	respect	to	sensing	application	distribution,	data	processing	and	scalable	
machine	 learning.	We	 increasingly	observe	ecosystems	of	devices,	where	multiple	devices	work	 together	
towards	 improved	 context	 sensing.	 For	 example,	 the	 Energy	 Efficient	 Mobile	 Sensing	 System	 (EEMSS)	
proposed	 by	 Wang	 et	 al.	 hierarchically	 orders	 sensors	 with	 respect	 to	 their	 energy	 consumption,	 and	
activates	 high-resolution	 power-hungry	 sensors,	 only	 when	 low-consumption	 ones	 sense	 an	 interesting	
event	[Wang	et	al.	2009].	The	variety	of	classification	methods	and	data	features	can	be	overwhelming	for	a	
mobile	 sensing	application	designer	and	 careful	 analysis	of	 the	purpose	and	 the	 intended	use	of	 context	
classification	can	help	the	designer	select	only	relevant	features	and	subsequently	the	applicable	machine	
learning	method.	

Table	2.	Context	domains	and	relevant	machine	learning	techniques	(adopted	from	Pejovic	&	Musolesi,	
2015)		

Domain	 Machine	learning	method	

Audio	and	speech	recognition	 Hidden	Markov	Model	(	(Chon	et	al.,	2012;	Choudhury	&	Pentland,	
2003)	

Threshold	based	learning	(Wang	et	al.,	2009)	

Gaussian	Mixture	Model	(GMM)	(Rachuri	et	al.,	2010;	Lu	et	al.,	
2012)	

Location	

	

Markov	chain	(Ashbrook	&	Starner	2003)	

Non-linear	time	series	(Scellato	et	al.,	2011;	De	Domenico	et	al.,	
2012)	

Bayesian	network	(Eagle	&	Pentland	2006;	Eagle	et	al.,	2009)	

Nearest	neighbour	(Maurer	et	al.,	2006)	

	

2.4 Context	Prediction	
Context	 prediction,	 especially	 in	 lieu	 of	 mobile	 computing	 devices,	 has	 focused	 on	 energy-related	
predictions	(Ravi	et.	all,	2008;	Bramble	&	Swift,	2014;	Peltonen	et	al.,	2015	&	Wagner	et	al.,	2013)	as	well	as	
prediction	of	processing	capability	(Zhou,	et	al.,	2015;	Tillenius	et	al.,	2015)	and	computation	offloading	(Xia	
et	 al.,	 2014;	 Akherfi	 et	 al.,	 2016).	 Other	 works	 exploit	multimodal	 data	 for	 context	 prediction,	 see	 e.g.,		
(Eagle	&	Pentland,	 2006;	 Laurila	 et	 al.,	 2012)	which	use	 such	data	 sets	 served	as	 a	proving	 ground	 for	 a	
number	of	approaches	towards	mobility	prediction.	

Table	 3	 outlines	 examples	 of	methods	 used	 for	 the	 prediction	 of	 the	movement	 and	 location	 of	mobile	
devices	 because	 this	 has	 been	 an	 area	 of	 active	 research	 as	well	 as	 because	 this	 application	 of	 context	
prediction	is	relevant	to	our	work	in	PrEstoCloud.	Historically,	the	prediction	of	mobile	devices’	movement	
patterns	was	 tied	with	 system	 optimisations.	 For	 small-scale	 indoor	movement	 predictions,	 systems	 can	
rely	on	sensors	embedded	in	the	buildings.	An	example	of	such	systems	is	MavHome:	the	authors	propose	
a	 smart	 home	 which	 adjusts	 indoor	 light	 and	 heating	 according	 to	 predicted	 movement	 of	 house	
inhabitants	(Cook	et	al.,	2003).		

In	 addition,	 predicted	 location	 can	 be	 considered	 on	 a	 level	 higher	 than	 geographical	 coordinates.	 	 The	
NextPlace	 project	 aims	 to	 predict	 not	 only	 user’s	 future	 location,	 but	 also	 the	 time	 of	 arrival	 and	 the	
interval	of	time	spent	at	that	location	(Scellato	et	al.,	2011).	The	authors	base	the	prediction	on	a	non-linear	
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time	 series	 analysis.	 SmartDC	 merges	 significant	 location	 prediction	 with	 energy-efficient	 sensing,	 and	
proposes	an	adaptive	duty	cycling	scheme	to	provide	contextual	information	about	mobility	of	users	(Chon	
et	al.,	2013).	

	

Table	3.	Modelling	methods	for	mobility	prediction	(adopted	from	Pejovic	&	Musolesi,	2015)		

Method	 Example	

Markovian	 Markov	process	(MP)	(Ashbrook	&	Starner	2003;	Song	et	al.	2004)	

Nonlinear	time	

series	analysis	

NTSA	[Scellato	et	al.	2011],		(De	Domenico	et	al.,	2012)	

Bayesian	 Dynamic	Bayesian	Network	(Eagle	&	Pentland	2006;	Eagle	et	al.,	2009)	

(McInerney	et	al.,	2013;	Etter	et	al.,	2013)	

Other/Hybrid	 MP	with	NTSA	(Chon	et	al.,	2013)	

Information-theoretic	uncertainty	minimization	(Bhattacharya	&	Das,	2001;	Cook	
et	al.,	2003)	

Statistical	regularity-based	model	(McNamara	et	al.,	2008),	

Temporal,	spatial	probabilistic	model	(Cho	et	al.,	2011),	

Frequent	meaningful	pattern	extraction	(Sadilek	&	Krumm,	2012)	

M5	trees	and	linear	regression	(Noulas	et	al.	2012)	

	

In	 another	 noteworthy	 approach	 coming	 from	 Big	 Data	 world,	 the	 Apache	Metron1	 provides	 a	 security	
analytics	 framework	built	with	 the	Hadoop	Community	evolving	 from	 the	Cisco	OpenSOC2	Project.	 It	 is	 a	
cyber	security	application	framework	that	provides	organizations	the	ability	to	detect	cyber	anomalies	and	
enable	organizations	to	rapidly	respond	to	 identified	anomalies.	Although	the	core	 features	and	scope	of	
Metron	is	not	directly	linked	to	PrEstoCloud,	its	real	time	processing	capabilities	include	contextual	analysis	
of	the	raw	streaming	data	in	order	to	infer	context	information	related	to	threat	intelligence,	geolocation,	
and	 DNS	 information	 to	 telemetry	 being	 collected.	 The	 immediate	 application	 of	 this	 information	 to	
incoming	 telemetry	 provides	 the	 context	 and	 situational	 awareness,	 as	 well	 as	 the	 “who”	 and	 “where”	
information	that	is	critical	for	investigation.	

	

	 	

																																									
1	http://metron.apache.org		
2	http://opensoc.github.io/		
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3. Mobile	Context	Model	&	Approach	
We	 can	 find	many	 complementary	 definitions	 of	 context	 in	 the	 literature.	 The	 survey	 paper	 of	 Li	 et	 al.	
(2015)	 summarizes	 some	 of	 the	 most	 known	 definitions	 of	 context	 and	 context	 awareness.	 From	 the	
perspective	 of	 the	 PrEstoCloud	Mobile	 Context	 Analyzer	 (MCA),	 context	 is	 defined	 by	 specializing	 in	 our	
domain	 one	 of	 the	 most	 cited	 definitions	 given	 in	 (Dey,	 2001).	 The	 term	 context	 here	 refers	 to	 any	
information	 (such	 as	 CPU,	memory	 or	 	 utilization,	 network	 type	 and	 traffic,	 battery	 state,	 software	 and	
hardware	 configuration,	 etc.)	 that	 can	 help	 to	 infer	 conclusions	 about	 current	 and	 future	 state	 of	
processing	 topologies	 in	 which	 participate	 multiple	 mobile	 or	 extreme	 edge	 devices	 (such	 as	 phones,	
tablets	or	drones).	

The	 specification	 of	 the	 PrEstoCloud	 context	 model	 is	 needed	 in	 order	 to	 store,	 process	 and	 distribute	
mobile	context.	Moreover,	the	context	model	will	be	the	stepping	stone	for	facilitating	event-based	context	
detection	 and	 inference	 functionality,	 in	 order	 to	 better	 understand	 situations	 in	 dynamic	 cloud	 and	 fog	
computing	platform.	Specifically,	context	will	be	used	to	better	respond	to	situations	that	demand	for	new	
computing	resources	at	the	edge	or/and	lead	to	a	number	of	service	adaptations.	 In	order	to	achieve	the	
goal	of	extracting	contextual	information,	analysing	them	and	then	deriving	higher	level	context,	we	follow	
an	event-based	context	modelling	approach.		

In	this	section,	we	present	the	PrEstoCloud	Context	Model	(Figure	1),	expressed	in	UML	2.0	class	diagram.	
We	chose	UML	class	diagrams	because	of	their	high	expressivity,	the	fact	that	they	are	well	understood	by	
developers	and	analysts	and	because	of	the	plethora	of	UML	complaint	tools.	The	model	 is	based	on	the	
W4H	model	(Truong	et	al.,	2009)	that	describes	the	five	main	elements	associated	within	a	context;	the	five	
elements	 are	 arranged	 into	 a	 quintuple	 (When,	 What,	 Where,	 Who,	 How).	 Our	 model	 also	 takes	 into	
account	 the	 Contextual	 Metamodel	 proposed	 by	 (Santos,	 2008),	 which	 depicts	 the	 key	 entities	 and	
relations	between	entities	that	represent	contextual	information.	

	

	 	
Figure	1.	PrEstoCloud	context	model	

	

The	Context	Model	expresses	 the	 temporal	 (i.e.	When),	 spatial	 (i.e.	Where),	declarative	 (i.e.	Who,	What)	
and	 explanatory	 (i.e.	 How)	 dimensions	 of	 context	 having	 as	 central	 point	 of	 focus	 the	 notion	 of	 Entity.	
Entities	 refer	 to	either	physical	 or	 virtual	 entities	with	 specific	 profiles	 and	preferences	 that	 characterise	
them	(e.g.	a	mobile	device).	We	use	 the	context	class	 to	 refer	 to	a	number	of	context	elements	 that	are	
related	 to	 the	 five	 dimensions	 of	 context.	 Each	 Context	 element	 can	 have	 a	 value	 that	 can	 be	 asserted	
and/or	 a	derived	 value	 that	 is	 inferred	 from	any	 kind	of	 reasoning	or	 computing	process	or	 function.	All	
context	related	information	should	be	captured	by	the	Mobile	Context	Analyser	as	objects	which	can	store	
either	a	single	scalar	value	or	multiple	values	such	as	vectors,	sets,	lists	etc.		
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Figure	2.		Context	model	lifecycle		

As	any	of	the	available	context	models	(Strang	&	Linnhoff-Popien,	2004),	the	context	model	of	PrEstoCloud	
needs	 to	 become	domain-	 or	 application-specific	 in	 order	 to	 be	 useful.	 Hence,	we	 follow	 the	 process	 of	
generic	 model	 usage,	 model	 specialization	 and	 instantiation	 (Figure	 2).	 Later	 in	 this	 deliverable,	 we	
illustrate	how	context	model	instantiation	is	realized	for	a	specific	application	scenario.		
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4. Context	Analysis	Methods	and	Technologies	

4.1 Requirements	
As	mentioned	in	section	3,	in	our	work	the	term	context	refers	to	any	information	(such	as	CPU,	memory	or		
utilization,	network	type	and	traffic,	battery	state,	software	and	hardware	configuration,	etc.)	that	can	help	
to	 infer	conclusions	about	current	and	future	state	of	processing	topologies	 in	which	participate	multiple	
mobile	or	extreme	edge	devices	 (such	as	phones,	 tablets	or	drones).	 These	conclusions	may	be	deduced	
from	a	single	device	(for	example	a	device	cannot	handle	a	specific	task	because	it	does	not	have	sufficient	
battery)	 or	 by	 combining	 information	 from	multiple	 devices	 either	 deterministically	 (i.e.	 there	 are	more	
than	 4	 devices	 with	 8	 cores	 and	 low	 CPU	 utilization	 within	 a	 range	 of	 	 100m	 of	 a	 WiFi	 hotspot)	 or	
probabilistically	(i.e.	from	historical	information	it	is	inferred	that	a	device	that	has	brightness	level	90%	and	
CPU	utilization	60%	will	consume	5%	of	its	battery	in	the	next	30	minutes).		

In	order	to	be	able	to	analyse	context	and	answer	to	a	broad	range	of	queries	as	the	above	mentioned	we	
must	 design,	 implement	 and	 operate	 a	 software	 component	 with	 specific	 characteristics.	 We	 have	
identified	 the	 following	 high-level	 functional	 and	 non-functional	 requirements	 for	 the	 Mobile	 Context	
Analyzer	(Table	4).		

Table	4.	MCA	high-level	requirements	

No	 Requirement	Description	 Requirement	
Type	

1	 Collect,	store	and	process	contextual	information	from	different	types	of	edge	
devices.	

Functional	

2	 Perceive	raw	contextual	information	in	the	form	of	events.	 Functional	

3	 Read	and	store	events	that	contain	contextual	information	with	payload	which	
can	 be	 in	 multiple	 formats	 (such	 as	 CSV	 or	 JSON)	 upon	 appropriate	
configuration	without	developing	new	parsing	 software	 components	 for	each	
type.		

Functional	

4	 Produce	 inferred	 context	 by	 combining	 and	 analysing	 raw	 information,	
deterministically	or	not.	

Functional	

5	 Publish	enriched	contextual	information	as	events.	 Functional	

6	 Answer	to	contextual	queries	with	a	RESTful	API	in	JSON	format.	 Functional	

7	 Validate	the	quality	of	input	and	output	information.	 Functional	

8	 Assess	 new	 information	 efficiently	 incrementally	 in	 order	 to	 provide	 inferred	
context	with	lower	resource	consumption.	

Non-Functional	

9	 Operate	in	an	efficient	and	scalable	way.		 Non-Functional	

10	 Process	and	deliver	contextual	information	with	low	latency.	 Non-Functional	

11	 Be	 flexible	 and	 easily	 integrated	 with	 external	 software	 and	 the	 other	
components	of	PrEstoCloud.	

Non-Functional	

	

4.2 Context	Analysis	Approach		
MCA	should	be	able	 to	operate	 in	an	environment	where	different	kinds	of	extreme	edge	devices,	 cloud	
services,	operating	systems	and	hardware	architectures	coexist.	Under	these	circumstances	 it	 is	expected	
that	 contextual	 information	 from	 such	 entities	will	 arrive	 to	MCA	 in	 different	 formats	 depending	 on	 the	
capabilities	and	 limitations	of	 them.	There	are	already	many	open	source	 tools	 that	are	designed	 for	 the	
collection,	 filtering	 and	 transformation	 of	 logs	 from	 multiple	 sources	 like	 Logstash	
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(https://www.elastic.co/products/logstash),	 Fluentd	 (https://www.fluentd.org/),	 Syslog-ng	 https://syslog-
ng.com/open-source-log-management	 	 and	 Rsyslog	 (http://www.rsyslog.com/).	 These	 tools	 can	 be	 used	
during	the	initial	stages	of	context	processing	pipeline	in	order	to	pre-process	the	input	data.	Each	tool	has	
its	own	strengths	and	weaknesses,	see		https://sematext.com/blog/logstash-alternatives/	and	(Andreassen	
et	al.,	2015;	Vega	et	al.,	2017;	Vaarandi	et	al.,	2013),	but	most	of	 them	are	considered	adequate	 for	 this	
task.	After	taking	in	consideration	their	capabilities,	we	have	concluded	that	in	the	first	version	of	MCA	we	
will	use	Logstash	for	the	context	pre-processing	functionalities	of	MCA	that	 include	the	transformation	of	
input	data	from	CSV	to	JSON	format,	the	conversion	of	different	date-time	strings	to	a	common	format,	the	
sending	 and	 receiving	 of	 streaming	 events	 based	 on	 the	 Advanced	 Message	 Queuing	 Protocol	 (AMQP)	
protocol	and	the	writing	of	context	data	to	Elasticsearch3.	 (Note	that	 for	 the	transmission	of	 raw	context	
data	 from	edge	devices	we	will	 rely	on	MQTT.)	 Logstash	provides	all	 these	 functionalities	out-of-the-box	
without	 the	 need	 to	 install	 plugins	 or	 to	 write	 extra	 software.	 As	 we	 will	 show	 later	 MCA	 should	 be	
integrated	with	the	PrEstoCloud	Broker	which	will	be	implemented	on	top	of	RabbitMQ4	and	Elasticsearch.	
RabbitMQ	 supports	 among	 others	 the	 lightweight	 MQTT	 and	 more	 advanced	 AMQP	 protocols	 for	
publishing	and	receiving	data	in	the	form	of	events.	

With	MCA	we	aim	not	only	to	collect,	transform	and	distribute	context	as	it	is	provided	by	each	source	but	
we	have	the	intention	to	provide	higher	value	context	analysis	services.	With	these	services	the	user	will	be	
able	to	receive	beyond	the	raw	context	data,	inferred	values	of	context	features.	These	inferences	may	be	
produced	either	by	quantitative	statistical	methods	or	by	more	advanced	machine	 learning	algorithms.	 In	
both	 cases	 the	 supported	 inferences	 will	 be	 data-driven.	 Elasticsearch	
(https://www.elastic.co/products/elasticsearch)	is	an	open-source	scalable	analytics	engine	with	a	RESTful	
API	 and	many	 embedded	 aggregation	 functions.	 It	 can	 store	 and	 index	 data	 in	 JSON	 format	 with	 good	
performance	 (Abubakar	 et	 al.,	 2014;	 Teodoro	 et	 al.,	 2018)	 and	 scalability.	 MCA	 will	 exploit	 the	 data	
aggregation	 framework	 of	 Elasticsearch	 in	 order	 to	 provide	 higher-level	 (aggregated)	 context	 to	 other	
PrEstoCloud	components.		

Beyond	 aggregated	 context,	 MCA	 aims	 to	 provide	 real-time	 context	 inference	 functionalities	 based	 on	
models	 that	 are	 constructed	with	machine	 learning	methods.	 Streaming	data	which	 contain	 raw	 context	
from	 extreme-edge	 devices	will	 be	 enriched	with	 predicted	 features	 in	 real-time.	 For	 example,	 for	 each	
mobile	 phone	 MCA	 will	 predict	 the	 remaining	 battery	 percentage	 in	 the	 next	 minutes.	 In	 order	 to	
implement	 the	 context	 prediction	 features	 of	 MCA,	 we	 will	 adopt	 a	 microservice-based	 architecture	
implemented	on	top	of	Docker	(https://www.docker.com)	containers.	In	this	way,	as	we	will	demonstrate	
scalable	 processing	 topologies,	 based	 on	 loosely-coupled	 micro-services	 that	 may	 operate	 in	 different	
execution	environments	and	may	be	written	even	in	different	programming	languages.		

In	 this	 version	 of	MCA,	 in	 order	 to	 implement	 the	 high	 level	 context	 inferencing,	 we	 used	 the	machine	
learning	 capabilities	 of	 a	 variation	 of	 the	 NEAT	 (NeuroEvolution	 of	 Augmenting	 Topologies)	 algorithm	
(Stanley	et	al.	2002).	Neuro-evolution,	has	the	ability	to	construct	artificial	neural	networks	by	using	data-
driven	genetic	algorithms	without	 requiring	 from	the	designer	 to	possess	extensive	experience	on	neural	
networks	or	to	describe	the	rules	that	hold	on	the	specific	domain.	Recent	studies	(Such	et	al.	2017)	claim	
that	 neural	 networks	 trained	 with	 genetic	 algorithms	 can	 achieve	 very	 good	 results	 in	 reinforcement	
learning.		

NEAT	is	a	genetic	algorithm	that	aims	to	generate	and	evolve	Artificial	Neural	Networks	(ANN).	The	Instinct	
algorithm	 (https://towardsdatascience.com/neuro-evolution-on-steroids-82bd14ddc2f6)	 is	 a	 variation	 of	
the	NEAT	algorithm	which,	according	to	the	author,	overcomes	a	set	of	problems	of	NEAT	in	order	to	better	
support	complex	datasets.	It	adds	new	capabilities	to	NEAT	such	as	using	different	activation	functions	and	
memory	cells	during	the	mutation	process.		

																																									
3	https://www.elastic.co/		
4	https://www.rabbitmq.com/	
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The	Neataptic		library	(https://wagenaartje.github.io/neataptic/docs/)	is	an	implementation	of	the	Instinct	
algorithm	in	Javascript.	Neataptic	can	combine	up	to	fifteen	types	of	activation	functions	such	as	Sigmoid,	
Relu,	Step	and	Gaussian	 in	networks	with	multiple	 layers.	Another	 important	feature	of	Neataptic	for	the	
context	inferencing	in	MCA		is	that	it	can	be	used	to	incrementally	train	artificial	neural	networks	with	new	
training	datasets	by	starting	from	the	output	of	a	previous	dataset	or	to	retrain	them	with	the	same	dataset		
in	order	to	reduce	the	error	(by	running	additional	iterations	of	the	algorithm).	In	this	way	machine	learning	
models	 learned	 from	 an	 initial	 dataset	 can	 be	 used	 to	 build	 faster	 models	 for	 other	 datasets	 that	 are	
produced	by	similar	devices.		

4.3 Methods	and	Algorithms	to	Infer	High	Level	Context		
The	 conceptual	 architecture	 of	 MCA	 is	 depicted	 is	 Figure	 3.	 It	 is	 organized	 in	 three	 layers.	 The	Online	
Processing	layer	contains	the	tasks	that	are	executed	in	real-time	as	the	events	that	contain	raw	contextual	
information	 arrive	 from	 the	 Broker.	 The	 Batch	 Processing	 layer	 contains	 the	 tasks	 that	 are	 executed	 on	
demand	or	periodically	with	input	from	historical	data.	The	Storage	layer	depicts	the	long	term	data	stores	
of	the	MCA.	The	tasks	that	are	depicted	with	dashed	outlines	will	be	implemented		in	the	second	version	of	
MCA	(due	M30).	

	

	
Figure	3.	Mobile	Context	Analyzer	conceptual	architecture	

Raw	context	from	edge	devices	like	mobile	phones,	drones,	IP	cameras	is	published	in	the	form	of	events	to	
the	PrEstoCloud	Broker.	During	 the	pre-processing	 stage,	 the	MCA	subscribes	 to	 the	Broker	and	 receives	
the	published	context	events.	The	main	role	of	the	pre-processing	stage	is	to	convert	the	input	events	to	a	
format	that	is	suitable	for	the	next	stages.	During	the	pre-processing	stage	raw	events	are	converted	to	the	
appropriate	format	(for	example	CSV	data	may	be	converted	to	JSON),	the	values	of	the	different	fields	are	
validated,	date/time	strings	are	converted	from	one	format	to	another.	After	the	pre-processing,	the	input	
data	fields	that	are	related	to	features	of	the	prediction	model	must	be	normalized.	These	features	can	be	
derived	from	device	sensor	values	such	as	the	current	memory	utilization,	the	remaining	battery	capacity	
and	the	current	screen	brightness	setting	or	device	specifications	such	as	the	number	of	cpu	cores,	the	total	
RAM,	 or	 the	 flash	 storage	 capacity.	 This	 task	 is	 performed	 during	 the	 Normalization	 stage.	 After	 the	
normalization,	the	events	are	stored	to	the	Historical	Context	Data	store	and	in	parallel	are	forwarded	to	
the	Model	Retrieval	component.	The	model	retrieval	component	chooses	the	right	models	according	to	the	
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characteristics	 of	 the	 device	 that	 sends	 the	 event	 (device	 type,	 model,	 software	 and	 hardware	
configuration).	 Then	 the	 appropriate	 prediction	model	 is	 executed.	 An	 example	 of	 a	model	 that	 will	 be	
presented	in	this	document	is	one	that	is	designed	in	order	to	predict	the	battery	percentage	of	a	mobile	
phone	in	the	next	minutes	based	on	the	current	state	of	it.		

The	parameters	of	the	prediction	models	are	learned	from	historical	data	inside	the	Batch	Processing	layer.	
Initial	 data	 are	 retrieved	 from	 the	 Historical	 Context	 Data	 store.	 Then	 these	 data	 are	 processed	 by	 the	
Resampling	and	Interpolation	components	where	the	numeric	values	are	aligned	in	regular	time	intervals.	
The	 output	 of	 this	 processing	 is	 injected	 to	 the	 (machine)	 Learning	 component.	 This	 component	 tries	 to	
construct	 a	 model	 that	 is	 able	 to	 predict	 the	 desired	 features	 with	 the	 minimum	 error	 possible.	 The	
machine	 learning	method	 that	 will	 be	 used	 in	MCA	 is	 described	 in	 the	 corresponding	 paragraph	 of	 this	
document	(paragraph	4.4.3).	It	is	based	on	neural	networks	that	are	designed	and	evolved	automatically	by	
a	genetic	algorithm.	The	output	of	the	Learning	component	is	a	prediction	model	that	can	be	used	in	real-	
time	 for	 the	 context	 prediction	 of	 the	 desired	 feature	 (e.g.	 future	 battery	 percentage).	 It	 is	 possible	 to	
construct	different	models	for	different	types	of	devices.	These	models	are	stored	in	the	Learned	Context	
Model	store.		

4.4 Technologies	&	Implementation	
	

In	 this	 section	 we	 describe	 the	 implementation	 details	 of	 the	 MCA	 while	 we	 discuss	 all	 the	 relevant	
technological	 decisions.	 To	 illustrate	 the	use	of	 various	 technologies	 and	 implementation	details,	we	will	
follow	an	example	scenario.	

4.4.1	Data	Acquisition		
A	primary	asset	for	the	Mobile	Context	Analyzer	is	the	Context-Logging	agent,	developed	for	exemplifying	
the	data	acquisition	with	respect	to	one	type	of	edge	devices	(i.e.	Android	devices).	Over	the	last	few	years	
the	Android-powered	devices	and	especially	smartphones	have	become	broadly	popular	with	the	number	
of	 such	 devices	 surpassing	 the	 2	 billion	 (https://twitter.com/Google/status/864890655906070529).	 The	
data	which	can	be	gathered	in	a	typical	Android	device	ranges	from	sensor	data	(such	as	GPS,	temperature,	
accelerometer,	 barometer)	 to	 processing	 state	 metrics	 (CPU,RAM	 consumption,	 running	 processes)	 and	
data	concerning	the	operational	environment	of	the	device	(WiFi	state	and	signal	strength,	mobile	network	
type	etc.).	The	Android	agent	we	developed	collects	and	submits	context	data	to	the	PrEstoCloud	Broker,	
which	in	turn	makes	it	available	for	further	analysis	(for	example	by	the	Mobile	Context	Analyzer	processing	
pipeline)	to	any	PrEstoCloud	component.	All	communication	is	realised	using	MQTT	minimizing	the	power	
consumption	 overhead	 arising	 from	 the	 usage	 of	 heavier	 protocols	 such	 as	 http	 (Joshi	 et	 al.,	 2017),	 and	
secured	with	Transport	Layer	Security	(TLS).	

A	 necessary	 precondition	 for	 the	mobile	 application	 to	 be	 installed	 and	 function	 properly,	 is	 the	 use	 of	
Android	version	of	4.4	or	newer,	and	the	availability	of	internet	connectivity	(WiFi	or	cellular).	Following	its	
installation,	 the	application	 sends	 an	announcement	message,	 and	 thereafter	 regularly	 sends	monitoring	
data	 to	 the	 PrEstoCloud	 Broker.	 The	 two	message	 types	 (for	 the	 announcement	 and	monitoring	 of	 the	
device)	used	by	the	application,	are	both	described	 in	CSV	format.	The	announcement	event	 is	used	only	
once.	The	native	characteristics	of	the	mobile	phone	reported	to	the	Broker	are	presented	in	Table	5:	

Table	5.	Transmitted	native	characteristics	of	mobiles	

Field	ID	 Field	Name	 Description		

1	 Information	Protocol	
version	

The	 version	 of	 the	 information	 protocol	 used	 as	 an	
integer,	concatenated	with	the	character	‘a’	(to	signify	an	
announcement	event).	

2	 Unique	Device	Id	

	

The	 unique	 id	 of	 the	 device,	 derived	 from	 the	
characteristics	of	the	operating	system	run	by	the	phone,	
is	anonymised	and	transmitted.	
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3	 CPU	core	number	 The	number	of	cores	reported	by	the	Android	runtime.		

4	 CPU	name	 The	name	of	the	CPU	of	the	device.	

5	 Maximum	/Minimum	
frequency	per	CPU	

The	maximum	 and	minimum	 frequency	 for	 each	 CPU	 of	
the	device,	in	Hz.	

6	 Kernel	version	 The	Linux	kernel	version	used	by	the	device.	

7	 OS	(and	API)	Level	 The	 Android	 OS	 installed	 on	 the	 device,	 and	 the	
corresponding	 Android	 API	 which	 can	 be	 used	 for	
programming	on	it.	

8	 Device	class	 An	 Id	 describing	 the	 family	 of	 mobile	 devices	 that	 this	
device	belongs	to.	

9	 Device	model	and	
product	

A	 string	 containing	 the	 product	 series	 of	 the	 mobile	
devices	that	this	device	belongs	to,	and	the	model.	

	

The	information	contained	in	each	transmission	is	shown	in	Table	6:	

Table	6.	Mobile	phone	tranmitted	events	

Field	ID		 Field	Name	 Field	Update	 Description		

1	 Information	
protocol	version	

None	(constant	variable)	 The	 version	 of	 the	 communication	
format	represented	as	an	integer.	

2	 Unique	device	id	

	

None	(constant	variable)	 The	 unique	 id	 of	 the	 device,	 derived	
from	 the	 characteristics	 of	 the	
operating	 system	 run	 by	 the	 phone,	
concatenated	with	a	random	string.	

3	 Current	frequency	
for	all	CPU’s	

Every	5		seconds	 The	frequency	for	every	CPU	of	the	
mobile	device	in	Hz.		

4	 Screen	brightness	
level	

Every	30	seconds	 An	 integer	 value	 from	 0	 to	 255,	
representing	 the	 brightness	 of	 the	
screen	of	 the	device,	 from	darkest	 to	
brightest.	

5	 Available	RAM	 Every	10	seconds	 A	 real	 number	 denoting	 the	 amount	
of	 MBs	 free	 in	 the	 main	 memory	 of	
the	device.	

6	 Available	RAM	
percentage	

Every	10	seconds	 An	integer	percentage	value	denoting	
the	 percentage	 of	 main	 memory	 of	
the	device,	which	is	free.	

7	 Available	storage	 Every	10	seconds	 An	 integer	 number	 denoting	 the	
amount	 of	 MBs	 in	 the	 filesystem	
available	for	applications	to	use.	

8	 Latitude	 On	location	change	 A	float	value	in	degrees,	denoting	the	
latitude	of	the	device.	

9	 Longitude	 On	location	change	 A	float	value	in	degrees,	denoting	the	
longitude	of	the	device.	

10	 Altitude	 On	location	change	 A	 float	value	denoting	 the	altitude	of	
the	device	

11	 Wifi	signal	and	
connectivity	status	

Every	10	seconds	 An	 integer	 number	 from	 0	 to	 5,	
denoting	 the	 strength	 of	 the	 of	 the	
WiFi	 signal	 (from	 none	 to	 excellent),	
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accompanied	by	a	value	‘1’	when	WiFi	
is	on	or	‘0’	when	WiFi	is	off.		

12	 Active	processes	list	
or	historical	
processes	list	

Every	10	seconds	 A	 list	 of	 strings	 containing	 the	
methods	 which	 are	 currently	
executed5	 or	 have	 been	 executed	 in	
the	past	24	hours6.	

13	 Mobile	network	
type	

Every	60	seconds	 The	 mobile	 network	 type	 (e.g.	 LTE,	
EDGE,	etc.)	used	by	the	device.	

14	 Battery	percentage,	
voltage,	
temperature	and	
charging	status	

On	 battery	 status	 change	
(Upon	
ACTION_BATTERY_CHANGED	
intent	reception)		

A	 list	 of	 boolean,	 integer	 and	 real	
number	 values,	 containing	 the	
remaining	 battery	 percentage,	 the	
voltage	 of	 the	 battery,	 the	
temperature	of	 the	battery,	 and	 	 the	
charging	 status	 of	 the	 device	 (‘0’	
when	 not	 charging	 and	 ‘1’	 when	
charging)	

15	 CPU	consumption	 Every	5	seconds	 An	 integer	 percentage	 value	
containing	 the	 average	 load	 from	
samples	 collected	 over	 the	 last	 3	
minutes.	

16	 Timestamp	 Upon	creation	of	the	record	 The	time	that	the	record	was	created,	
in	 the	 format	 of	
day.month.abbreviatedYear_hour.mi
nute.second	

	

The	 mobile	 application	 consists	 of	 a	 number	 of	 monitoring	 modules	 (classes),	 which	 refresh	 their	 data	
either	 when	 an	 event	 occurs	 (for	 example	 the	 GPS	 location	 update)	 or	 after	 a	 set	 time	 interval.	 	 The	
instantiation	of	the	context	model	for	the	case	of	the	mobile	phone	is	shown	in	Figure	4.	

																																									
5	Applies	to	Android	versions	prior	to	Android	Nougat	
6	Applies	to	Android	Nougat	and	succeeding	Android	versions	
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Figure	4.	Context	model	instantiation	

The	 architectural	 layout	 of	 the	 application	 is	 shown	 in	 Figure	 5.	 The	Main	 Activity	 retrieves	 information	
from	data	modules	which	is	then	published	to	the	PrEstoCloud	broker	and	displayed	on	the	screen	of	the	
user.	

	
Figure	5.	The	internal	architecture	of	the	Android	monitoring	agent.		

The	 application	was	 deployed	 on	 five	 different	 Android	 devices,	 which	 published	 all	 data	 on	 a	message	
Broker	using	the	MQTT	protocol.	The	monitoring	data	collected	was	representative	of	a	variety	of	use-cases	
–	 from	 simple	 discharging	 with	 low	 user	 interaction	 to	 purposeful	 heavy	 usage.	 The	 application	 was	
configured	with	the	required	TLS	certificates	in	order	to	communicate	with	the	broker,	which	in	turn	logged	
all	incoming	data	for	further	analysis.	During	a	time	period	of	over	two	months,	between	December	1st	and	
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February	15th,	more	than	250	Megabytes	of	usable	data	have	been	captured,	featuring	several	thousands	
of	state	records.	The	device	types	used	are	shown	in	Table	7:	

Table	7.	Specification	of	device	types	

Device	Brand	 Device	Model	

Samsung	 J510FN	

LG	 H525n	

Samsung	 GT-I9301i	

Samsung	 GT-I9505	

Samsung	 A-520F	

	

In	 the	 following	 sections	we	 present	 the	 processing	methods	 of	 the	 context	 data	 collected	 through	 the	
Android	agent.		Our	objective	is	to	demonstrate	the	utilization	of	the	transmitted	information,	in	order	to	
predict	the	battery	consumption	over	a	specific	time	interval.	This	prediction	is	key	to	determine	a	proper	
recommendation	on	which	processing	tasks	should	be	sent	for	execution	on	Android	devices.	Specifically,	
forthcoming	 WP5	 components	 such	 as	 the	 PrEstoCloud	 Situation	 Detector	 and	 the	 Adaptation	
Recommender	 will	 exploit	 such	 inferred	 context	 in	 order	 to	 propose	 the	 execution	 of	 lighter	 tasks	 on	
devices	 which	 are	 low	 on	 battery,	 and	 the	 execution	 of	 more	 demanding	 tasks	 on	 devices	 which	 are	
adequately	charged.	

	

4.4.2	Online	Processing	
	

The	implementation	details	of	the	online	processing	part	of	MCA	is	depicted	in	Figure	6.	MCA	consists	of	a	
RabbitMQ	broker,	two	at	least	Logstash	instances,	a	set	of	set	of	context	inferencing	workers	implemented	
as	 NodeJS	 services,	 an	 Elasticsearch	 cluster	 and	 a	 Kibana	 instance.	 All	 the	 MCA	 components	 are	
implemented	as	Docker	containers.	Docker	containers	can	be	deployed	and	executed	by	an	administrator	
very	easily	with	tools	such	as	Docker	Compose.	The	events	 that	are	exchanged	either	between	the	other	
PrEstoCloud	 components	 and	 the	MCA	or	between	 the	 internal	 components	 that	 comprise	 the	MCA	are	
handled	 by	 a	 RabbitMQ	 broker.	 Initially	 events	 containing	 raw	 context	 data	 from	 extreme	 edge	 devices	
(such	as	mobile	phones,	IP	cameras,	or	drones)	are	published	to	RabbitMQ	with	the	MQTT	protocol.	Then	
the	rest	of	the	MCA	components	communicate	by	exchanging	events	with	RabbitMQ.	
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Figure	6.	MCA	online	processing	infrastructure	

The	internal	components	of	MCA	are	communicating	based	on	the	AMQP	protocol.	Different	messaging	
patterns	are	used	in	different	stages	of	the	MCA.	

	
Figure	7.	MCA	messaging	patterns	

Data	from	edge-devices	are	transmitted	by	the	Broker	(RabbitMQ)	over	the	AMQP	protocol	to	the	Logstash	
instance	that	is	configured	for	to	implement	the	pre-processing	of	the	data	(figure	6,	point	1).	Here	we	have	
used	 the	 publish/subscribe	 messaging	 pattern	 according	 to	 which	 the	 Broker	 delivers	 each	 incoming	
message	to	all	subscribers.		

The	 Logstash	 (pre-processing	 instance)	 then	 transmits	 messages	 to	 one	 or	 more	 inference	 workers	 by	
publishing	them	to	the	Broker	(figure	6,	point	2).	Here	we	use	a	work	queue	with	round-robin	dispatching.	
This	 means	 that	 the	 Broker	 will	 deliver	 each	 message	 to	 exactly	 one	 worker.	 The	 workload	 will	 be	
distributed	among	workers.	

In	the	final	stage	the	inference	workers	publish	the	results	to	the	Broker	(figure	6,	point	3).	Then	a	separate	
Logstash	instance	is	used	to	receive	messages	from	the	Broker	and	send	them	to	Elasticsearch	(over	HTTP	
protocol)	(figure	6,	point	4.	In	point	3	we	use	a	simple	RabbitMQ	queue.	With	this	configuration	the	Broker	
(RabbitMQ)	will	store	messages	from	the	producers	(inference	workers)		and	deliver	them	to	the	consumer	
(routing	Logstash	instance).	

The	 MCA	 microservices	 are	 implemented	 using	 docker	 containers.	 MCA	 can	 be	 executed	 with	 docker-
compose.	The	structure	of	the	docker-compose	file	is	the	following	:	
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MCA	Microservices	/	Docker-Compose	file	

- Services		
o Elastic	search	cluster	

§ Elasticsearch1,	Elasticsearch2	
o Kibana	
o RabbitMQ	
o Logstash	(pre-processing)		
o Logstash	(routing)	
o Inference	Workers	

- Volumes	
o Esdata1,	Esdata2	

	

Inference	worker	scaling	with	docker-compose		

Multiple	 inference	 worker	 microservices	 (docker	 containers)	 can	 run	 simultaneously.	 The	 Broker	
(RabbitMQ)	 automatically	 load	 balances	 the	 workload	 (incoming	 pre-processed	 events)	 between	 all	 the	
started	 (online)	 inference	services.	 	By	 issuing	an	appropriate	docker-compose	command	we	can	execute	
the	MCA	with	multiple	instances	of	the	Docker-Compose	service	“inference_svc”	as	described	in	Figure	8.		

	

	
Figure	8.	Docker	compose	inference	service	definition	

This	docker-compose	service	 is	a	Node.js	service	that	 implements	 the	context	 inference	 functionalities	of	
MCA.	The	definition	in	Figure	8	tells	docker-compose	which	OS	image	to	use	(image:	“node:8”)	and	defines	
the	required	execution	parameters	such	as	exposed	ports	(8081),	volume	mappings	(	.	to	/home/node/app)	
and	start	commands	(npm	start)	in	order	to	be	integrated	with	the	other	MCA	components.	

By	issuing	the	following	command	we	can	execute	the	MCA	with	two	instances	of	the	Docker-Compose	
service	“inference_svc”.		

$ sudo docker-compose up --scale inference_svc=2	
	

Figure	 9	 depicts	 the	 result	 	 of	 the	 above	 command.	 Input	 workload	 (events	 from	 mobile	 devices)	 are	
distributed	in	a	round-robin	manner	between	the	two	inference	worker	instances.	

$ sudo docker-compose up --scale inference_svc=2	
	

inference_svc:	
    image: "node:8"	
    user: "node"	
    working_dir: /home/node/app	
    environment:	
      - NODE_ENV=production	
    volumes:	
      - ./:/home/node/app	
    expose:	
      - "8081"	
    command: "npm start"	
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Figure	9.	Online	processing	running	with	2	inference	workers		

	

We	can	scale	up	the	MCA	by	telling	docker-compose	to	execute	more	instances	of	the	inference_svc.	For	
example	with	the	following	command	we	can	start	four	inference	worker	instances:	

 
$ sudo docker-compose up --scale inference_svc=4 
 
Figure	9	depicts	the	result		of	the	above	command.	Input	workload	(events	from	mobile	devices)	are	now	
distributed	in	a	round-robin	manner	between	the	four	inference	worker	instances.	

	
Figure	10.	Online	processing	running	with	4	inference	workers	

	

Logstash	Pre-processing	functionalities	
	
Logstash	is	used	in	the	pre-processing	stage.	By	defining	appropriate	configuration	files	(logstash	pipelines)	
logstash	 can	 perform	 event	 format	 transformation	 and	 enrichment.	 The	 following	 figures	 depict	 how	
Logstash	 can	be	used	 for	 the	pre-processing	of	events	 that	 are	published	by	 the	Android	mobile	devices	
with	the	application	that	we	designed	and	implemented.	
	
By	 configuring	 a	 filter	 we	 can	 tell	 logstash	 to	 convert	 events	 in	 CSV	 format	 to	 JSON	 (Figure	 10).	 The	
parameter	“columns”	assigns	names	to	fields.	The	parameter	“convert”	can	be	used	in	order	to	validate	an	



PrEstoCloud	GA	732339	Deliverable	D3.5	
“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	

	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 26	

input	 value	 according	 to	 the	 declared	 datatype	 and	 give	 logstash	 directions	 in	 order	 to	 encode	 it	
appropriately	in	a	JSON	object.		
	
csv	{	
			separator	=>	","	
			columns	=>									
["bright_lvl","ram_pct","store_mb","lat","lon","alt","wifi_state","plist","net_type","bat_state","cpu_load_pct","ts"]	
			convert	=>	{	
																								"lat"	=>	"float"	
																								"lon"	=>	"float"	
																								"bright_lvl"	=>	"integer"	
	 								…	more	mappings	follow	…	
			}	
}	

Figure	11.	Read	a	comma-separated	event	and	map	it	to	json	field	names	

	
In	Figure	11	we	can	see	how	we	can	parse	a	datetime	string	with	Logstash	and	convert	it	to	a	timestamp.	
	
date	{	
																match	=>	[	"ts",	"dd.MM.yy_HH.mm.ss"]	
}	

Figure	12.	Parse	a	date/time	string	and	convert	it	to	an	event	timestamp	

	
In	Figure	12	we	show	how	a	list	separated	by	“;”	character	can	be	converted	to	a	JSON	array	with	Logstash,	
	
split	=>	{	
																								"plist"	=>	";"	
}	

Figure	13.	Split	a	list	separated	by	“;”	

	
In	Figure	13	we	show	how	Logstash	can	be	configured	to	normalize	sensor	values	in	order	to	enter	them	in	
a	machine	learning	algorithm.	In	the	specific	example	we	normalize	the	values	of	mobile	phone	brightness	
levels	 and	 map	 them	 from	 the	 range	 (0,255)	 to	 the	 range	 (0,1.0)	 by	 multiplying	 them	 with		
0.0039215686274.		
	
ruby	{	
																code	=>	'event.set("bright_lvl_nr",	event.get("bright_lvl").to_i	*	0.0039215686274	)'	
}	

Figure	14.	Normalize	a	value	(map	a	value	from	0	to	255	to	the	range:	0.0	-	1.0)	

	
	
Elasticsearch	context	aggregation	queries	
	
Elasticsearch	 can	 be	 used	 in	 order	 to	 produce	 aggregated	 context.	 It	 supports	 four	 categories	 of	
aggregations	 (Metrics,	 Bucket,	 Pipeline	 and	Matrix).	 Each	 category	 contains	many	 types	 of	 aggregations.	
Different	 aggregations	 can	 be	 combined.	 In	 (figure	 14)	 we	 can	 see	 an	 example	 of	 a	 geographical	
aggregation	that	can	be	used	for	context	inference.	With	this	query	we	can	see	how	many	mobile	phones	
operate	in	specific	distance	ranges	from	a	location	(for	example	the	location	of	an	edge	router).		
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Figure	15.	Count	mobile	phones	around	a	location	and	get	results	per	distance	range	(0	to	200km,	200km	
to	1000km,	over	1000km)	

	
The	example	context	aggregation	query	depicted	in	(Figure	15)	can	be	used	to	find	the	hour	of	the	day	that	
the	average	free	ram	of	mobile	devices	is	the	maximum	or	the	minimum.	

	

	
Figure	16.	Find	the	average	ram	of	all	devices	per	hour	and	get	statistics	about	it	(min,	max,	average,	

sum)	

	

Kibana		

Kibana	(https://www.elastic.co/products/kibana)	is	a	visualization	tool	for	Elasticsearch.	With	it	an	analyst	
can	examine	events	from	edge	devices	and	build	custom	context	aggregation	queries	and	visualizations.	

	

QUERY:	

RESULTS	:	

QUERY:	

RESULTS	:	
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Figure	17.	Discovery	for	mobile	phone	events	during	a	specific	time	period	(29/12/’17	to	4/1/’18)	

	

With	Kibana	the	analyst	can	build	many	types	of	visualizations.	In	(Figure	17)	we	can	see	a	visualization	of	
the	number	of	mobile	devices	per	location	with	a	heatmap	diagram.		

	

	
Figure	18.	Heatmap	Kibana	visualization	depicts	the	number	of	mobile	devices	at	specific	locations	

	

4.4.3	Batch	Processing		
MCA	 context	 inference	 in	 batch	mode	 refers	 to	 the	 supervised	 learning	 of	 neural	 networks	 that	 predict	
context	parameters	based	on	historical	context	data.	This	 functionality	 is	designed	 in	order	 to	satisfy	 the	
need	for	non-deterministic	context	 inference	as	documented	 in	Requirement	4	(Produce	 inferred	context	
by	 combining	 and	 analysing	 raw	 information,	 deterministically	 or	 not).	 Data-driven	 machine-learning	
methods	can	be	used	in	order	to	build	models	that	are	capable	to	predict	context	parameters	(such	as	the	
future	battery	capacity	of	a	mobile	device	that	has	specific	hardware	characteristics	and	state).	As	we	will	
show	in	this	chapter,	such	methods	can	be	applied	to	devices	never	seen	before	by	MCA	(as	 long	as	they	
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have	 similar	 characteristics	 with	 devices	 already	 analyzed).	 The	 output	 of	 these	 models	 are	 predicted	
context	parameter	values	which	we	expect	to	have	an	error	bellow	a	threshold.	

Input	dataset	

Building	on	the	 illustrative	example	mentioned	above,	we	will	present	 the	way	that	 the	Batch	Processing	
layer	of	MCA	operates.	Specifically,	we	show	how	the	machine	learning	model	is	created	in	order	to	be	able	
to	predict	the	battery	of	a	specific	mobile	device	based	on	four	features:	Memory	utilization	(ram),	Battery	
capacity	(bat),	Screen	brightness	(bright)	and	the	hour	of	the	day.	

The	 field	 real_next_bat	 is	pre-computed	 from	historical	data	and	 corresponds	 to	 the	battery	 capacity	30	
minutes	after	the	time	of	the	measurement.		

The	 raw	 data	 from	 the	 mobile	 device	 are	 resampled	 and	 interpolated	 with	 the	 Pandas	 Python	 library	
(McKinney,	 2018)	 in	 order	 to	 generate	 four	 uniform	 time	 series	with	 time-steps	 that	 correspond	 to	 one	
minute.	

The	dataset	depicted	in	(Figure	18)	contains	data	from	one	mobile	phone	and	covers	a	time	period	from	1-
Dec-2017	to	19-Jan-2018.		

	
Figure	19.	Input	dataset	

	

Training	Dataset	(subset	16	to	21	–	Jan	–	2018)	

With	the	historical	data	from	this	mobile	phone	we	will	attempt	to	build	with	different	methods	machine	
learning	models	 (neural	 networks)	 capable	 to	 predict	 the	 future	 battery	 capacity	 of	 a	mobile	 phone.	 As	
training	dataset	 for	 supervised	 learning	we	used	a	 subset	of	 the	above	dataset	 covering	 the	 time	period	
from	16-Jan-2018	to	21-Jan-2018.		
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Figure	20.Training	dataset	

	

All	the	developed	neural	networks	have	four	inputs	and	one	output.	The	mapping	that	we	will	use	is	the	
following:	

• Input	0	:	Normalized	hour	of	day	(hour/24.0)	
• Input	1	:	Normalized	percent	of	ram	(ram/100.0)	
• Input	2	:	Normalized	screen	brightness	level	(bright/255.0)	
• Input	3	:	Normalized	percentage	of	battery	(bat/100.0)	
• 	Output	0	:	Normalized	percentage	of	battery	after	30	minutes	(real_next_bat/100.0)	

	

Perceptron	trials	

With	 the	 help	 of	 the	Neataptic	 library	 (https://wagenaartje.github.io/neataptic/docs/)	we	have	built	 and	
trained	 	 many	 types	 of	 multi-layer	 Perceptron	 (Rosenblatt,	 1958)	 neural	 networks	 by	 using	 the	 error	
backpropagation	algorithm	(Hecht-Nielsen,	1992),	see	Table	8.	
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Table	8.	Description	of	tested	Perceptron	Neural	Networks	

Neural	Network	Type	 Number	of	
input	layer	
neurons		

Neurons	per	hidden	
layer	

Number	of	
output	layer	
neurons	

Cost	function	used	

Perceptron(4,	10,	10,	10,	
10,	1)	

4	 10,	10,	10,	10	 1	 Mean	Squared	Error	
(MSE)	

Perceptron(4,	40,	4,	40,	
4,	1)	

4	 40,	4,	40,	4	 1	 Mean	Squared	Error	
(MSE)	

Perceptron(4,	40,	20,	1)	 4	 40,	20	 1	 Mean	Squared	Error	
(MSE)	

Perceptron(4,	4,	1)		 4	 4	 1	 Mean	Squared	Error	
(MSE),	Mean	Absolute	
Error	(MAE)	

Perceptron(4,	1,	1)	 4	 1	 1	 Mean	Squared	Error	
(MSE)	

Perceptron(4,	16,	16,	16,	
4,	1)	

4	 16,	16,	16,	4	 1	 Mean	Squared	Error	
(MSE)	

Perceptron(4,	4,	4,	4,	4,	
1)	

4	 4,	4,	4,	4	 1	 Mean	Squared	Error	
(MSE)	

Perceptron(4,	40,	40,	40	
,	40,	1)	

4	 40,	40,	40,	40	 1	 Mean	Squared	Error	
(MSE)	

	

The	 best	 results	 were	 achieved	 by	 the	 Perceptron(4,4,1)	 neural	 network	 with	Mean	 Squared	 Error	 cost	
function.	

Perceptron	(4.4.1)	training	results	

If	we	try	to	train	with	backpropagation		a	simple	perceptron	neural	network	with	four	inputs,	1	hidden	layer	
with	 four	nodes	and	one	output	 layer	we	get	 results	as	 those	 that	we	show	 in	 figure	20.	 	The	green	 line	
corresponds	 to	 the	 future	 (after	 30	minutes)	 battery	 capacity	 that	 was	 predicted	 by	 the	 trained	 neural	
network.	The	blue	line	corresponds	to	the	actual	future	battery	capacity.	We	can	clearly	see	that	while	this	
model	follows	some	of	the	patterns	of	the	battery	capacity	time	series	it	is	not	very	close	to	the	reality.	
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Figure	21.	Perceptron	(4,4,1)	training	results	

	

After	 1000	 iterations	 the	 training	 algorithm	 converged	 to	 a	 neural	 network	 with	 error	
0.0001292101064029624	(Figure	21).	

	
Figure	22.	Perceptron	(4,4,1)	neural	network	

	

LSTM	trials	

LSTM	(Long	Short-Term	Memory)	[23]	neural	networks	are	better	at	predicting	patterns	in	time	series	data	
with	unknown	time	 lags.	Several	LSTM	units	connected	form	a	recurrent	neural	network	(RNN).	With	the	
help	of	the	Neataptic	library	we	have	built	and	trained	many	types	of	multi-layer	LSTM	neural	networks	by	
using	the	error	backpropagation	algorithm	(Hecht-Nielsen,	1992),	see	Table	9.	

	

Table	9.	Description	of	tested	LSTM	Neural	Networks	

Neural	Network	Type	 Number	of	
input	layer	

Memory	cells	per	
memory	block	

Number	of	
output	layer	

Cost	function	used	
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neurons		 assembly	 neurons	

LSTM(4,	8,	8,	8,	8,	1)	 4	 8,	8,	8,	8	 1	 MSE	

LSTM(4,	4,	1)	 4	 4	 1	 MSE	

LSTM(4,	16,	1)	 4	 16	 1	 MSE,	MAE	

LSTM(4,	1,	1)		 4	 1	 1	 MSE,	MAE	

LSTM(4,	4,	16,	4,	1)	 4	 4,	16,	4	 1	 MSE	

	

The	best	results	were	achieved	by	the	LSTM	(4,4,1)	neural	network.	

	

LSTM	(4,4,1)	training	results	

	

A	 trained	 LSTM	network	with	 four	 inputs,	 one	memory	 block	with	 4	memory	 assemblies	 and	 an	 output	
node	while	it	is	much	more	complex	than	the	perceptron	network	does	not	achieve	better	results	than	the	
latter.	

	
Figure	23.	LSTM	(4,4,1)	training	results	

	

After	 180	 iterations	 the	 training	 algorithm	 converged	 to	 a	 neural	 network	 with	 error	
.00012184095632515447	(Figure	23).	
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Figure	24.	LSTM	(4,4,1)	neural	network	

	

NARX	trials	

NARX	 (Nonlinear	AutoRegressive	with	eXogenous	 inputs)	 (Billings,	 2013)	neural	networks	have	been	also	
applied	for	time	series	prediction.		We	have	trained	the	following	types	of	NARX	neural	networks	by	using	
the	error	backpropagation	algorithm	(Table	10).	
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Table	10.	Description	of	tested	NARX	Neural	Networks	

Neural	Network	
Type	

Number	
of	input	
layer	
neurons		

Number	of	
nodes	per	
hidden	layer	

Number	
of	output	
layer	
neurons	

Number	of	
previous	
inputs	that	
the	NN	
remembers	

Number	of	
previous	
outputs	that	
the	NN	
remembers	

Cost	
function	
used	

NARX(4,	5,	1,	1,	5)	 4	 5	 1	 1	 5	
MSE	

NARX(4,	5,	1,	3,	3)	 4	 5	 1	 3	 3	 MSE	

NARX(4,	
[10,20,10],	1,	30,	
30)	

4	 10,	20,	10	 1	 30	 30	 MSE,	MAE	

NARX(4,	10,	1,	10,	
5)	

4	 10	 1	 10	 5	 MSE	

NARX(4,	100,	1,	
10,	5)	

4	 100	 1	 10	 5	 MSE	

	

The	best	results	were	achieved	by	the	NARX(	4,	5,	1,	1,	5)		neural	network.	

NARX	4,5,1,1,5	training	results	

While	the	following	NARX	neural	network	predicts	better	than	the	LSTM	it	is	not	as	good	as	the	Perceptron.	

	
Figure	25.	NARX	(4,5,1,1,5)	training	results	

 

After	139	iterations	which	lasted	3797	seconds	the	training	algorithm	converged	to	a	neural	network	with	
error	0.00009992158278938505	(Figure	25).	
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Figure	26.	NARX	4,5,1,1,5		neural	network		

	

Conclusion	from	manually	building	neural	networks		

By	using	software	 libraries	we	can	continue	the	process	described	above	and	build	quickly	many	kinds	of	
neural	 networks	by	 adding	more	nodes	 and	 layers.	 But	many	 times,	 as	 in	 the	use	 case	 that	we	describe	
here,	this	trial	and	error	process	does	not	always	provide	better	results.		There	is	a	need	for	an	automated	
process	 that	 evaluates	 different	 types	 of	 neural	 networks	 until	 it	 finds	 the	 one	 that	 fits	 best	 to	 a	 given	
(context-inferencing)	 problem.	 There	 are	 already	 methods	 such	 as	 genetic	 algorithms	 (Auger	 &	 Doerr,	
2011)	that	are	good	at	finding	optimum	solutions	in	large	search	spaces.	

	

Incremental	Neuroevolution		

By	 utilizing	 neuro-evolution	 we	 can	 automatically	 generate	 and	 evaluate	 neural	 networks	 based	 on	
historical	 data.	Neuro-evolution	 starts	 from	a	 random	neural-network	and	 then	with	 a	 genetic	 algorithm	
tries	 to	 find	 an	 optimum	 solution	 (a	 neural	 network	 that	minimizes	 a	 cost	 function)	with	 a	 process	 that	
involves	 creation	 of	 offsprings	 and	mutations	 (Sher,2012).	With	 the	 help	 of	 the	Neataptic	 libary	we	 can	
incrementally	 learn	neural	networks	with	neuro-evolution.	We	can	stop	the	algorithm	when	 it	achieves	a	
specific	error	level	or	after	it	completes	a	specific	number	of	iterations.	In	the	subsequent	execution	of	the	
algorithm	the	neuroevolution	process	can	be	initiated	from	a	previous	learned	neural	network	(instead	of	
starting	from	a	random	network).	The	ability	to	incrementally	learn	(better)	neural	networks	is	very	useful	
because	 you	 can	 find	 an	 initial	 solution	 and	 then	 improve	 it	 by	 utilizing	 more	 computation	 resources	
(processing	time)	or	more	data	(bigger	in	volume	or	more	specific	to	a	device	or	a	time	period).			

In	 the	 following	 paragraphs	 we	 will	 demonstrate	 this	 incremental	 process.	 Figure	 26	 encapsulates	 the	
prediction	results	of	a	model	(neural	network)	built	with	neuro-evolution	after	25	iterations	of	the	process.	
It	depicts	the	predicted	and	the	real	values	for	the	time	period	that	was	excluded	from	the	training	dataset.	
The	results	are	already	better	than	those	that	were	produced	by	manually	constructed	NNs.		
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Figure	27.	Results	after	25	neuro-evolution	iterations	

	

	
Figure	28.	Neural	network	selected	by	the	genetic	algorithm	after	25	iterations	

	

If	we	 allow	 the	 neuro-evolution	 algorithm	 to	 perform	 additional	 iterations	 (providing	more	 computation	
time)	we	see	that	it	converges	to	even	better	results.	Figures	28,29,31	depict	the	results	after	50,250	and	
500	 iterations.	 We	 have	 found	 that	 after	 250	 iterations	 there	 is	 very	 little	 difference	 and	 the	
neuroevolution	algorithm	from	this	point	starts	to	converge	very	slowly	(for	the	specific	dataset).	
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Figure	29.	Results	after	50	neuro-evolution	iterations	

	

	
Figure	30.	Results	after	250	neuro-evolution	iterations	
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Figure	31.	Neural	network	selected	by	the	genetic	algorithm	after	250	iterations	

	
Figure	32.	Results	after	500	neuro-evolution	iterations	
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Figure	33.	Neural	network	selected	by	the	genetic	algorithm	after	500	iterations	

	

Prediction	of	different	phones	with	model	built	by	neuro-evolution	

In	 the	 following	 figures	 (33,	 34,	 35,	 36,	 37)	 we	 present	 how	 capable	 is	 the	 neural	 network	 learned	 by	
historical	data	from	one	mobile	phone	(the	one	presented	previously)	to	predict	the	battery	percentage	in	
the	next	30	minutes	of	five	different	mobile	phones.	

	
Figure	34.	Battery	of	mobile	“1cd471e”	predicted	by	a	model	trained	with	data	from	“2e046813”	
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Figure	35.	Battery	of	mobile	“7HR8WC..”	predicted	by	a	model	trained	with	data	from	“2e046813”	

	

	
Figure	36.	Battery	of	mobile	“99…”	predicted	by	a	model	trained	with	data	from	“2e046813”	
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Figure	37.	Battery	of	mobile	“52109a0..”	predicted	by	a	model	trained	with	data	from	“2e046813”	

	

	
Figure	38.	Battery	of	mobile	“dacc3411”	predicted	by	a	model	trained	with	data	from	“2e046813”	
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5. Conclusions	
	

This	deliverable	presented	 the	 first	version	of	 the	Mobile	Context	Analyzer	component,	which	allows	 the	
detection	 and	 enhancement	 of	 context	 gathered	 from	devices	 at	 the	 extreme	 edge	 of	 the	 network.	We	
described	 our	 approach	 which	 factors	 in	 the	 current	 State-of-the-Art	 and	 builds	 upon	 reputable	
programming	 frameworks	 and	 solutions.	 The	 Mobile	 Context	 Analyser	 makes	 use	 of	 and	 implements	 a	
Context	Model,	which	can	accurately	represent	the	Context	gathered	and	processed.		

We	designed	the	component	so	as	it	is	modular	and	can	be	easily	deployed	and	used.	An	advantage	of	this	
approach	is	that	it	is	possible	to	improve,	extend	and	reuse	it	to	acquire	and	monitor	the	context	of	a	wide	
range	 of	 computing	 infrastructure	 types.	 We	 also	 demonstrated	 a	 real-world	 scenario	 indicative	 of	 the	
usage	of	our	component,	and	its	capabilities.		

Our	 next	 objective	 will	 be	 the	 completion	 of	 the	 Situation	 Detection	 Mechanism	 (part	 of	 Task	 T5.1	
“Situation	Awareness	at	 the	Extreme	Edge	of	 the	Network”),	which	will	 produce	and	handle	 information	
from	the	whole	processing	 topology	and	provide	a	complete	view	of	 it.	This	will	enable	us	afterwards	 to	
focus	 on	 the	 adaptation	 and	 reconfiguration	 mechanisms	 of	 the	 processing	 topology	 so	 that	 its	
performance	requirements	can	be	satisfied.	
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