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Executive	Summary	
	

This	deliverable	reports	on	the	work	performed	under	Task	5.1	“Situation	awareness	at	the	extreme	edge	
of	 the	network”	with	 respect	 to	 the	development	of	a	situation	detection	mechanism.	The	mechanism	 is	
part	of	the	Meta-Management	layer	of	the	PrEstoCloud	architecture	(D2.3),	which	mainly	provides	valuable	
input	 to	 the	 Control	 layer	 in	 order	 to	 perform	 adaptation	 of	 cloud	 resources.	 The	 situation	 detection	
mechanism	is	able	to	detect	situations	where	the	PrEstoCloud	infrastructure	requires	an	adaptation	action	
which	significantly	influences	the	recommended	processing	topology,	including	the	extreme	edge	layer.	

We	designed	Situation	Detection	Mechanism	so	as	 it	 is	modular	 and	 can	be	easily	deployed	as	a	Docker	
container	 or	 a	 set	 of	 Docker	 containers.	 Moreover,	 we	 designed	 Situation	 Detection	 Mechanism	 to	 be	
independent	of	Complex	Event	Processing	 libraries	and	we	have	shown	that	 it	can	operate	with	both	the	
Siddhi	 and	 Drools	 Complex	 Event	 Processing	 libraries.	 The	 deployment	 flexibility	 of	 Situation	 Detection	
Mechanism	is	quite	important	since	it	allows	the	PrEstoCloud	adopter	to	use	the	Complex	Event	Processing	
engine	 of	 her	 choice	 based	 on	 the	 processing	 capabilities	 required	 in	 each	 case	 and	 the	 prior	 expertise	
regarding	 a	 certain	 Complex	 Event	 Processing	 engine.	 We	 also	 demonstrated	 a	 real-world	 scenario	
indicative	of	the	usage	of	our	component,	and	its	capabilities.		

The	primary	input	for	Situation	Detection	Mechanism	is	considered	any	health	status	event	or	application	
performance-related	 event	 transmitted	 to	 the	 Communication	 and	 Message	 Broker.	 Such	 events	 are	
exploited	by	SDM	in	order	to	reveal	problematic	situations	with	respect	to	the	state	of	the	cloud	and	edge	
resources	used	 for	hosting	big	data-intensive	applications	or	 to	 the	performance	 state	of	 the	application	
itself.	The	Situation	Detection	Mechanism	will	provide	input	to	the	PrEstoCloud	Adaptation	Recommender	
(D5.5),	which	will	 consume	the	situations	 that	are	detected	by	Situation	Detection	Mechanism	to	 initiate	
the	most	appropriate	adaptation	actions.	The	Adaptation	Recommender	will	be	fed	also	with	the	output	of	
other	WP5	components,	namely,	the	Mobile	Context	Analyser	and	Workload	Predictor	and	will	generate	as	
output	specific	recommendations	for	adaptations	in	the	PrEstoCloud	infrastructure	resources.	
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1. Introduction	

1.1 Scope	
This	 deliverable	 reports	 on	 the	 baseline	 implementation	 of	 the	 Situation	Detection	Mechanism	 (SDM),	 a	
software	 system	 that	 will	 equip	 the	 PrEstoCloud	 platform	 with	 the	 necessary	 situation	 awareness	 for	
detecting	situations	requiring	some	kind	of	 infrastructure	or	application	adaptation	or	re-configuration.	 It	
will	do	so	by	processing	and	analysing	data	streams	generated	both	by	the	PrEstoCloud	platform	as	well	as	
data-intensive	applications	and	services	deployed	on	PrEstoCloud,	that	is,	on	attached	cloud	resources	or	at	
computing	resources	at	the	extreme	edge	of	the	network.		

The	scope	of	this	deliverable	includes	the	description	of	the	Situation	model	that	abstractly	depicts	entities	
and	relationships	between	entities	that	model	the	SDM	capabilities	and	enable	the	detection	of	situations	
with	 respect	 to	 the	 status	 of	 the	 services	 and	 the	 deployment	 infrastructure.	 Secondly,	 this	 deliverable	
describes	 the	 research	 and	 development	 work	 towards	 the	 SDM	 whose	 goal	 is	 to	 identify	 interesting	
situations	 that	 might	 lead	 to	 resources	 adaptation	 recommendations	 or	 data-intensive	 application	
reconfiguration	or	redeployments.		

SDM	is	designed	so	that	it	can	use	the	following	inputs:	(i)	Big	Data	streams;	(ii)	event	data;	(iii)	contextual	
data;	 (iv)	 QoS	 variations	 (e.g.,	 due	 to	 low	 bandwidth)	 and	 (v)	 monitoring	 data	 related	 to	 the	 real-time	
processing	networks.	The	overarching	goal	for	SDM	is	to	enhance	PrEstoCloud	with	reliability	with	respect	
to	the	stream	processing	topology	as	it	will	be	able	to	detect	possible	failures	and	trigger	corrective	actions	
through	 issuing	new	adaptation	 recommendations.	Moreover,	 SDM	aims	 to	 serve	 at	 the	 same	 time	as	 a	
feedback	management	mechanism	with	respect	to	the	analysis	of	the	outcomes	of	resources	adaptations	
and	data-intensive	redeployments,	thus	it	will	allow	for	improvements	of	future	adaptations.		

1.2 Relation	to	PrEstoCloud	Tasks	
The	SDM	component	has	been	defined	in	the	description	of	work	of	the	PrEstoCloud	project	as	part	of	Task	
5.1.	 It	 materialises	 a	 software	 system	 able	 to	 sense	 the	 PrEstoCloud	 Infrastructure	 and	 deployed	
applications	 and	 services,	 and	 detect	 situations	 in	 the	 way	 the	 latter	 was	 defined	 in	 Deliverable	 D2.1	
(Scientific	 and	 Technological	 State-of-the-Art	 analysis)	 and	 formulated	 as	 a	 functional	 requirement	 in	
Deliverable	D2.2	(High-level	requirements	analysis	for	the	PrEstoCloud	platform).	The	system	also	adheres	
to	 the	 foundations	 set	 for	 the	 entire	 PrEstoCloud	 topology	 in	 deliverable	 D2.3	 (PrEstoCloud	 Conceptual	
Architecture).	 The	 SDM	 receives	 input	 from	 the	 Communication	 and	Message	 broker	 for	 real-time	 data	
streams	and	processes	it	taking	into	account	the	specifications	of	the	communication	format	developed	in	
Deliverable	 D2.4	 (Format	 and	 procedures	 for	 plugging	 in	 real-time	 data	 streams).	 	 The	 SDM	 is	 itself	 a	
primary	input	for	the	operation	of	the	Resources	Adaptation	Recommender	(Task	T5.2).	

1.3 Document	Structure		
The	 deliverable	 is	 structured	 as	 follows:	 	 Section	 2	 presents	 the	 related	 work	 already	 performed	 on	
situation	awareness,	modelling	and	detection	in	the	area	of	ubiquitous	computing.	Section	3	describes	the	
situation	 metamodel	 and	 our	 approach	 for	 the	 development	 of	 the	 PrEstoCloud	 situation	 detection	
mechanism.	 Section	 4	 presents	 the	 architecture	 and	 the	 technologies	 used	 to	 implement	 our	 situation	
detection	 approach.	 Section	 5	 includes	 an	 analysis	 of	 the	 performance	 of	 the	 situation	 detection	
mechanism.	Last,	we	present	our	conclusions	and	future	work	in	Section	6.	
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2. Related	Works		
This	section	discusses	works	that	pertain	situation	awareness,	modelling	and	detection,	with	an	emphasis	
on	ubiquitous	computing	systems	and	applications.	

2.1 Situation	Awareness	
Situation	Awareness	(SA)	refers	to	the	“perception	of	the	elements	in	the	environment	within	a	volume	of	
time	and	space,	the	comprehension	of	their	meaning,	and	the	projection	of	their	status	in	the	near	future”	
(Endsley	2016),	(Franke	and	Brynielsson	2014).	To	realize	systems	for	Situation	Awareness,	individual	pieces	
of	raw	information	(e.g.	sensor	data)	should	be	interpreted	into	a	higher,	domain-relevant	concept	called	
situation,	 which	 is	 an	 abstract	 state	 of	 affairs	 interesting	 to	 specific	 applications.	 The	 power	 of	 using	
“situations”	lies	in	their	ability	to	provide	a	simple,	human-understandable	representation	of,	for	instance,	
sensor	data	(Loia	et	al.	2016).	In	the	context	of	dynamic	computing	systems,	situation	is	defined	as	an	event	
occurrence	that	might	require	a	reaction	(Adi	and	Etzion	2004).	

In	pervasive	computing,	SA	 is	 the	capability	of	 the	entities	of	 the	computing	environment	to	be	aware	of	
situation	 changes	 and	 automatically	 adapt	 themselves	 to	 such	 changes	 to	 satisfy	 user	 requirements,	
including	 security	 and	 privacy	 (Yau	&	 Liu	 2006).	 SA	 is	 one	 of	 the	most	 fundamental	 features	 to	 support	
dynamic	adaptation	of	entities	in	pervasive	computing	environments.	A	situation	is	a	set	of	contexts	in	the	
application	 over	 a	 period	 of	 time	 that	 affects	 future	 system	 behaviour.	 A	 context	 is	 an	 instantaneous,	
detectable,	 and	 relevant	 property	 of	 the	 environment,	 system,	 or	 users,	 such	 as	 location,	 available	
bandwidth	and	a	user’s	schedule	(Yau	et	al.	2002a,	b).		

A	 pervasive	 computing	 environment	 involves	 a	 set	 of	 cooperative	 entities,	 each	 of	 which	 has	 related	
context	 data.	 In	 order	 to	 support	 situation-aware	 adaptation	 of	 the	 entities	 in	 pervasive	 computing	
environments,	it	is	necessary	to	model	and	specify	context	and	situation	in	a	way	such	that	multiple	entities	
can	easily	exchange,	share	and	reuse	their	knowledge	on	context	and	situation	(Yau	et	al.	2006).	

2.2 Situation	Modelling	
A	situation	is	a	subjective	concept,	whose	definition	depends	on	sensors	in	a	current	system,	which	decide	
available	contexts	used	in	a	specification;	on	the	environment	where	the	system	works,	which	determines	
the	domain	knowledge	to	be	applied	(e.g.,	a	spatial	map);	and	on	the	requirement	of	applications,	which	
determines	what	 states	 of	 affairs	 are	 interesting.	 The	 same	 sensor	 data	 can	 be	 interpreted	 to	 different	
situations	according	to	the	requirements	of	applications	(Ye	et	al	.2012).	Situations	are	composite	entities	
whose	constituents	are	other	entities,	their	properties	and	the	relations	in	which	they	are	involved	(Costa	
et	al.	2006).	Situations	support	us	in	conceptualizing	certain	“parts	of	reality	that	can	be	comprehended	as	
a	whole”	(Hoehndorf	2005).	

Situations	 are	 often	 reified	 (such	 as	 in	 Barwise	 1989,	 Costa	 et	 al.	 2006),	 or	 ascribed	 an	 “object”	 status	
(Kokar	 et	 al.	 2009),	 which	 enables	 one	 not	 only	 to	 identify	 situations	 in	 facts	 but	 also	 to	 refer	 to	 the	
properties	of	situations	themselves.	For	example,	we	could	refer	to	the	duration	of	a	particular	situation	or	
whether	a	situation	is	current	or	past,	which	would	enable	us	to	say	that	the	situation	“Drone	out	of	range”	
occurred	 yesterday	 and	 lasted	 two	 hours.	 The	 temporal	 aspect	 of	 situations	 also	 enables	 us	 to	 refer	 to	
change	 in	 time,	 thus	we	 could	 say	 that	 “VM1’s	CPU	utilisation	 is	 rising”	or	 that	 “VM2	memory	has	been	
overdrawn	for	the	last	15	days”.	

Costa,	 et	 al.	 2012	 developed	 the	 Situation	 Modeling	 Language	 (SML)	 which	 is	 a	 graphical	 language	 for	
situation	modeling,	allowing	the	expression	of	primitive	situation	types	and	complex	situation	types	(with	
temporal	 constraints	 when	 required)	 SML	 allows	 composition	 of	 situations	 using	 the	 temporal	 formal	
relations	 defined	 by	 Allen	 (1983),	 namely	 before,	meets,	 overlaps,	 starts,	 during,	 finishes,	 coincides	 and	
their	relations	(after,	met	by,	overlapped	by,	started	by,	includes,	and	finished	by).	

A	situation	type	definition	 in	SML	 is	a	composition	of	 two	kinds	of	models	 (Sobral	et	al.	2015):	a	context	
model	 and	 a	 situation	 type	model.	 The	 context	 model	 is	 a	 structural	 model	 that	 defines	 the	 classes	 of	
entities	and	relationships	that	exist	in	the	modelled	domain,	which	in	turn	are	referred	by	the	situation	type	
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model	entities.	 In	order	 to	define	context	models,	SML	employs	an	ontologically	well-founded	UML	class	
diagram	profile	called	OntoUML	(Guizzardi	2005).	

In	Context	Toolkit	 (Dey	2000),	 situation	 is	modelled	on	a	 system	 level	as	 the	aggregation	of	 context,	but	
there	is	no	language-level	situation	modelling.	Situation	calculus	and	its	extensions	(McCarthy	2000)	model	
situation	 based	 on	 the	 effects	 of	 actions	 and	 events,	 and	 consider	 situation	 as	 a	 complete	 state	 of	 the	
world.	 A	 core	 SAW	 ontology	 (Matheus	 et	 al.	 2003)	 models	 situation	 as	 a	 collection	 of	 Goals,	
SituationObjects	 and	 Relations	 using	 UML,	 and	 can	 be	 converted	 to	 OWL	 representation.	 A	 conceptual	
model	for	context	and	situation	for	service-based	systems	and	a	situation	specification	example	based	on	
the	conceptual	model	using	F-logic	are	presented	in	(Yau	et	al.	2006).	

Kalyan	et	al.	(2005)	introduced	a	multi-level	situation	theory,	where	an	intermediate	level	micro	situation	is	
introduced	between	infons	and	situations.	Infons	and	situations	are	two	of	the	major	conceptual	notions	in	
situation	theory.	An	infon	embodies	a	discrete	unit	of	information	for	a	single	entity	(e.g.,	a	resource	node),	
while	 a	 situation	 makes	 certain	 infons	 factual	 and	 thus	 support	 facts.	 Situations	 are	 considered	 as	 a	
hierarchical	aggregation	of	micro	situations	and	situations.	This	work	aims	to	assist	information	reuse	and	
support	ease	of	retrieving	the	right	kind	of	information	by	providing	appropriate	abstraction	of	information.	
Using	the	concept	of	micro	situations,	the	authors	address	how	to	handle	complex	user	queries	by	creating	
simpler	entity-specific	micro	situations	and	further	combining	them	to	arrive	at	users’	current	situation	and	
as	 well	 as	 to	 enable	 efficient	 reasoning.	 We	 follow	 a	 similar	 approach	 in	 which	 we	 allow	 for	 different	
abstraction	levels	for	situations,	as	described	in	the	Section	3.	

2.3 Situation	Detection	in	Ubiquitous	Environments	
Situations	 in	 computing	 infrastructures	 are	 highly	 related	 to	 sensor	 data,	 domain	 knowledge	 on	
environments	 and	 individual	 users,	 and	 applications.	 Sensor	 data	 occur	 in	 large	 volumes,	 in	 different	
modalities,	and	are	highly	 inter-dependent,	dynamic	and	uncertain.	Situations	are	 in	a	rich	structural	and	
temporal	 relationship,	 and	 they	 evolve	 in	 diffuse	 boundaries.	 In	 addition,	 the	 complexity	 in	 domain	
knowledge	and	applications	makes	studying	situations	a	very	challenging	task.	(Ye	et	al.	2012).	

Situation	detection	has	been	studied	extensively	 in	ubiquitous	computing,	Figure	1	shows	an	overview	of	
existing	approaches.	

	

	
Figure	1.	Overview	of	situation	detection	approaches	(adapted	from	Ye	et	al.	2012)	
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Specification-based	approaches	represent	expert	knowledge	in	the	form	of	logic	rules	based	on	event	and	
sensor	 data,	 and	 apply	 reasoning	 engines	 to	 infer	 proper	 situations	 from	 current	 sensor	 input	 (Ye	 et	 al.	
2012).	 Existing	 approaches	 range	 from	 earlier	 attempts	 in	 first-order	 logic	 (Ranganathan	 et	 al.	 2004)	 to	
complex	event	processing	and	more	advanced	logic	models	that	aims	to	support	efficient	reasoning	while	
keeping	 expressive	 power,	 see,	 e.g.,	 Loke	 2010.	 With	 their	 powerful	 representation	 and	 reasoning	
capabilities,	 ontologies	 have	 been	widely	 applied,	 see	 Chen	 et	 al.	 2004.	 As	more	 and	more	 sensors	 are	
deployed	 in	 real-world	 environments	 for	 a	 long-term	 experiment,	 the	 uncertainty	 of	 sensor	 data	 starts	
gaining	attention.	To	deal	with	the	uncertainty,	traditional	logic-based	techniques	need	to	be	incorporated	
with	 other	 probabilistic	 techniques	 (Delir	 Haghighi	 et	 al.	 2008).	 Specification-based	 approaches	 have	
introduced	uncertainty	metrics	to	describe	sensor	data,	including	incompleteness,	accuracy,	timeliness,	and	
reliability	(Gray	and	Salber	2001;	Lei	et	al.	2002;	Cohen	et	al.	2002).	The	concept	hierarchy	in	ontologies	are	
typically	used	to	evaluate	the	precision	of	sensor	data	against	the	conditions	of	rules.	

Learning-based	techniques	have	been	widely	applied	to	 learning	complex	associations	between	situations	
and	sensor	data	(Ye	et	al.	2012).	Most	of	the	examined	learning	techniques	are	supervised	learning,	such	as	
naïve	 Bayes,	 Bayesian	 networks,	 HMMs,	 CRFs,	 and	 so	 on.	 These	 techniques	 learn	 the	 models	 and	
parameters	 from	 training	data	 that	usually	 requires	a	human	 to	 label	 a	 situation	 to	 sensor	data	 that	are	
observed	 during	 the	 occurrence	 of	 this	 situation.	When	 there	 exists	 a	 large	 number	 of	 situations	 to	 be	
identified,	manual	 labelling	of	 training	data	may	place	a	significant	burden	on	developers	 involved	 in	 the	
data	 collection.	 Therefore,	 supervised	 learning	 techniques	 may	 have	 limitations	 in	 real-life	 deployment	
where	scalability,	applicability,	and	adaptability	are	highly	concerned	(Gu	et	al.	2010).	To	tackle	this	issue,	
researchers	 have	 employed	 unsupervised	 learning	 approaches.	 Among	 them,	 suffix-tree	 and	 Jeffrey	
divergence	can	extract	features	from	sensor	observations,	which	are	distinguishable	from	one	situation	to	
another	 (Ye	 et	 al.	 2012).	 A	 neural	 network	 is	 classified	 as	 unsupervised,	 although	 parameters	 of	 neural	
networks	can	sometimes	be	estimated	using	 supervised	 learning.	Web	mining	 techniques	are	not	 strictly	
unsupervised	 learning	 in	that	they	perform	the	 learning	on	web	documents,	 rather	than	on	the	collected	
sensor	 data.	 Decision	 trees	 and	 Support	 Vector	Machines,	which	 are	 built	 on	 information	 entropy,	 have	
also	been	used	to	classify	sensor	data	into	situations	based	on	features	extracted	from	sensor	data.	

Compared	to	specification-based	approaches,	a	distinguishable	features	of	the	learning-based	approaches	
is	 their	 ability	 in	 uncovering	 a	pattern	or	 correlation	underlying	data.	 Learning-based	approaches	 can	be	
used	to	extract	categorical	 features	 from	numerical	sensor	data;	 for	example,	 learning	network	surges	or	
abnormal	VM	power	consumption	from	sensor	data.	They	can	learn	correlations	between	a	combination	of	
relevant	 categorical	 or	 numerical	 sensor	 data	 and	 situations;	 for	 example,	 learning	 the	 pattern	 of	 how	
services	consume	memory	resources	when	they	perform	a	certain	activity	or	run	a	specific	method.	

Learning-based	approaches	have	a	stronger	capability	to	resolve	uncertainty	by	training	with	the	real-world	
data	that	involves	noise.	These	approaches	not	only	learn	associations	between	sensor	data	and	situations,	
but	also	the	effect	that	the	uncertainty	of	sensor	data	has	on	the	associations.	For	example,	the	conditional	
probabilities	learned	in	naïve	Bayes	includes	the	reliability	of	sensor	data	as	well	as	the	contribution	of	the	
characterised	sensor	data	in	identifying	a	situation	(Ye	et	al.	2012).	

2.4 Event	Processing	in	Ubiquitous	Environments	
The	first	version	of	SDM	focuses	on	providing	detection	capabilities	for	situations	that	are	few	and	can	be	
modelled	manually.	Hence,	we	follow	a	specification-based	approach.	Specifically,	we	will	follow	a	complex	
event	 processing	 approach	 for	 modelling	 and	 detecting	 situations.	 The	 reason	 for	 this	 decision	 is	 the	
maturity	of	the	approach	as	well	as	the	availability	of	highly	capable	event	processing	engines	that	can	cope	
with	 the	veracity	and	volume	and	events	 that	 the	PrEstoCloud	 infrastructure	and	associated	applications	
will	generate.	

Dayarathna	and	Srinath	 (2018)	surveyed	recent	advancements	 in	event	processing	 in	depth	by	classifying	
the	broad	area	of	EP	 into	 three	main	areas	of	 focus:	EP	use	cases,	EP	system	architectures,	and	EP	open	
research	 topics.	 In	 another	 recent	 survey,	 Flouris	 et	 al.	 (2015)	 analysed	 adaptive	 CEP	 (i.e.,	 alter	 query	
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execution	plan	at	 runtime),	CEP	 in	distributed	settings,	and	CEP	with	 imprecisions	 in	 the	data.	Moreover,	
the	survey	made	by	Gaber	et	al.	(2014)	concerned	stream	processing	on	ubiquitous	environments.		

A	few	notable	surveys	were	conducted	on	the	algorithmic	aspects	of	stream	processing.	Stream	clustering	
has	been	an	area	of	great	importance.	The	work	done	by	Silva	et	al.	(2013)	is	one	of	the	earliest	examples	
of	this	category	of	surveys.	A	second	example	is	the	work	done	by	Aggarwal	(2013).	The	work	by	Amini	et	
al.	 (2014)	 is	the	third	example	of	such	surveys.	The	work	by	Hirzel	et	al.	 (2014)	 is	an	example	of	a	survey	
conducted	on	the	performance	optimization	techniques	of	data	stream	processing.		

Dayarathna	 and	 Srinath	 (2018)	 categorize	 software	 tools	 for	 EP	 under	 three	 subtypes:	 Event	 Processing	
Platforms,	Distributed	Stream	Computing	Platforms,	and	CEP	libraries	(i.e.,	CEP	engines).	Event	Processing	
Platforms	are	types	of	ESP	software	that	provide	high-level	programming	models	such	as	expressive	event	
processing	 languages	 (EPLs)	 and	 built-in	 functions	 for	 event	 filtering,	 correlation,	 and	 abstraction.	
Distributed	Stream	Computing	are	platforms	that	provide	explicit	support	 for	distribution	of	computation	
across	 multiple	 nodes	 in	 a	 computer	 cluster.	 The	 CEP	 library	 (we	 also	 use	 the	 term	 CEP	 engine	
interchangeably)	 in	 general	 is	 a	 software	 component	 that	 especially	 focuses	 on	 detection	 of	 complex	
events.	 In	 the	 following	 sub-sections,	 we	 briefly	 present	 recent	 advances	 in	 CEP	 engines	 as	 well	 as	
distributed	stream	computing	platforms.		

Distributed	Stream	Computing	Platforms	
Dayarathna	and	Srinath	(2018)	distinguish	two	main	variations	of	Distributed	Stream	Computing	Platforms:	
per-event	processing	and	microbatching.	Per-event	processing	EP	systems	treat	each	and	every	event	that	
they	 receive	 individually.	 They	 provide	 very	 low	 latencies	 while	 low	 throughput	 compared	 to	 their	
counterpart	(microbatching).	Example	systems	that	implement	per-event	processing	include	S4,	Storm,	and	
Flink.	 Batched	 stream	 processing	 systems	 provide	 high	 throughput	 but	 introduce	 relatively	 high	 latency.	
Spark	Streaming	and	Storm	Trident	are	examples	for	systems	that	follow	microbatching.	Spark	Streaming,	
Apache	 Flink	 and	Apache	Apex	 are	 examples	 of	Distributed	 Stream	Computing	Platforms	 that	 have	both	
batch	 and	 stream	 processing	 capabilities.	 A	 feature	 comparison	 of	 such	 platforms	 is	 provided	 by	
Dayarathna	and	Srinath	(2018).	Notable,	only	Spark	Streaming,	Storm,	and	Flink	are	equipped	with	an	SQL-
like	query	language.		

Complex	Event	Processing	Systems	
The	CEP	system	should	be	able	to	identify	meaningful	patterns,	relationships,	and	data	abstractions	among	
apparently	unrelated	events,	 and	 fire	 a	 response	 immediately.	CEP	 systems	are	 lightweight	 components.	
Several	notable	CEP	systems	have	appeared	recently	in	both	industry	and	academia.	Esper,	Drools,	Siddhi,	
ruleCore	and	Cayuga		are	some	of	the	notable	CEP	systems	that	have	appeared	recently.	A	comparison	of	
the	features	and	scalability	of	Epser,	Siddhi,	ruleCore	and	Cayuga	which	has	been	performed	by	Dayarathna	
and	 Srinath	 (2018)	 identified	 Siddhi	 as	 the	 best	 CEP	 system,	 especially	 in	 terms	 of	 scalability.	 The	
comparison	 does	 not	 include,	 unfortunately,	 the	 widely	 adopted	 Drools	 system.	 This	 was	 one	 of	 the	
reasons	that	we	opted	to	test	and	compare	Drools,	as	explained	in	Section	4.	

Context-Aware	Event	Processing	
Context	has	become	a	significant	abstraction	for	modelling	the	EP	(Etzion	et	al.	2011).	Event	context	and	
the	context	awareness	are	two	very	important	factors	in	IoT	applications.	Three	key	uses	of	the	context	in	
EP	 applications	 can	 be	 summarized	 as	 temporal	 context,	 spatial/segment	 context,	 and	 state-oriented	
context	(Dayarathna	and	Srinath,	2018).	 In	temporal	context,	the	stream	is	divided	 into	windows	and	the	
operations	 are	 defined	 in	 terms	 of	 the	 processing	 done	 on	 the	 events	 stored	 in	 the	 window.	
Spatial/segment-oriented	context	allows	for	assigning	related	events	to	different	context	partitions.	The	EP	
agent	can	be	active	in	some	contexts	and	inactive	in	others,	which	is	called	state-oriented	context.	Akbar	et	
al.	 (2015)	 described	 a	 context-aware	 method	 to	 extract	 and	 analyse	 high-level	 knowledge	 from	 data	
streams.	The	proposed	approach	has	been	implemented	on	μCEP,	which	is	a	lightweight	CEP	that	runs	on	
embedded	 devices.	 Similarly,	 Wang	 and	 Cao	 (2012)	 described	 a	 high-performance	 context-aware	 CEP	
architecture	and	method	for	the	IoT.	They	modelled	the	context	as	fuzzy	ontology	that	supports	linguistic	
variables	and	uncertainty	in	event	queries.	
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3. Situation	Metamodel	&	Situation	Detection	Approach	

3.1 Situation	Metamodel	
In	the	PrEstoCloud	project,	we	follow	an	event-based	approach	for	situation	modelling	and	detection.	We	
consider	 sensor	 data	 or	 event	 encompassing	 raw	 (or	 minimally	 processed)	 data	 retrieved	 from	 both	
physical	sensors	and	‘virtual’	sensors	observing	systems,	services	and	applications	such	as	network	traffic.	
These	 data	 are	 used	 to	 form	 context	 –	 the	 environment	 in	 which	 the	 system	 operates	 (D3.5	 “Mobile	
Context	 Analyser”	 reports	 on	 how	 we	 handle	 it	 in	 the	 PrEstoCloud	 project),	 and	 situations,	 which	 are	
considered	as	an	abstraction	of	the	events	occurring	in	the	real	world.	

We	define	a	situation	as	an	external	semantic	interpretation	of	events.	Interpretation	means	that	situations	
assign	meanings	 to	 events;	 external	means	 that	 the	 interpretation	 is	 performed	 from	 the	perspective	 of	
applications,	rather	than	from	events;	semantic	means	that	the	 interpretation	assigns	meaning	on	events	
based	 on	 structures	 and	 relationships	 within	 the	 same	 type	 of	 events	 and	 between	 different	 types	 of	
events	 (Ye	 et	 al.	 2012).	 The	 latter	 part	 is	 achieved	 by	 the	 combination	 with	 the	 output	 of	 the	 Mobile	
Context	 Analyzer,	 MCA	 (D3.5)	 to	 be	 reported	 in	 the	 deliverable	 D5.6	 “Resources	 Adaptation	 &	 Data-
intensive	 Application	 Recommenders”.	 A	 situation	 can	 uncover	meaningful	 correlations	 between	 events,	
labelling	 them	with	 a	 descriptive	 name.	 The	 descriptive	 name	 can	 be	 called	 a	 descriptive	 definition	 of	 a	
situation,	which	is	about	how	a	human	defines	a	state	of	affairs	in	reality.			

	
Figure	2.	PrEstoCloud	Situation	Metamodel	

In	 Figure	 2,	we	 describe	 the	 PrEstoCloud	 Situation	Metamodel	 that	 captures	 the	 concepts	 and	 artefacts	
based	 on	which	 the	 SDM	will	 be	 able	 to	 detect	meaningful	 PrEstoCloud	 situations.	 Such	 situations	may	
reveal	 impending	 failures	or	even	opportunities	 for	 increasing	 the	performance	of	 the	deployed	Big	Data	
intensive	applications	over	multi-cloud	and	edge	 resources.	 Specifically,	 these	detected	 situations	will	be	
used	 by	 the	 Resources	 Adaptation	 Recommender	 along	 with	 the	 derived	 context	 and	 any	 workload	
predictions	 available,	 coming	 from	 other	 PrEstoCloud	Meta-Management	 Layer	 components	 in	 order	 to	
recommend	reconfigurations	concerning	 the	application	 fragments	used	or	adaptations	on	 the	employed	
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cloud	and	edge	resources.	Although,	metamodeling	refers	to	the	analysis	and	development	of	a	number	of	
rules	 and	 constraints,	 applicable	 for	 modelling	 a	 predefined	 class	 of	 problems,	 here	 we	 use	 the	 term	
Metamodel	 to	 describe	 the	 frame	 of	 concepts	 and	 their	 associations	 that	 should	 be	 followed	 for	
implementing	SDM’s	core	capabilities.		

According	 to	 the	 PrEstoCloud	 approach	 the	 PrEstoCloudSituation	 comprise	 AtomicSituation	 and	
CompositeSituation	 (Figure	 2).	 An	AtomicSituation	 represents	 any	 basic	 situation	whose	 value	 is	 directly	
derived	 from	 the	 value	 of	 a	 ComplexEvent.	 A	 ComplexEvent	 	 is	 composed	 of	 SimpleEvents	 (e.g.	 raw	
incoming	events)	and	expresses	a	ScalabilityRequirement	(e.g.	 if	RAM	>80%	and	CPU	>	60%	for	at	 least	5	
minutes…)	 that	 should	 drive	 the	 Adaptation	 of	 the	 big	 data	 intensive	 application	 according	 to	 a	
ScalabilityAction	(e.g.	…	then	scale	horizontally).		

The	 CompositeSituation	 represents	 complicated	 situations	 pertained	 to	 the	 logical	 composition	 and	
temporal	 composition	 of	 AtomicSituations.	 The	 logical	 composition	 over	 other	 situations	 refer	 to	 the	
ConjunctionSituation	 (i.e.	 combining	 two	 or	 more	 AtomicSituations	 using	 the	 logical	 AND	 operator),	
DisjunctionSituation	 (i.e.	 combining	 two	 or	 more	 AtomicSituations	 using	 the	 logical	 OR	 operator),	 and	
NegationSituation	 (i.e.	 combining	 two	 or	 more	 AtomicSituations	 using	 the	 logical	 NOT	 operator);	 the	
temporal	composition	can	be	implemented	using	the	TemporalSituation	that	describes	certain	time-related	
dependencies	 or	 sequence	 associations	 between	 two	 or	 more	 AtomicSituations.	 A	 situation	 may	 occur	
before,	or	after	another	situation,	or	interleave	with	another	situation.		

A	CompositeSituation	can	be	decomposed	 into	a	 set	of	 smaller	 situations,	which	 is	 a	 typical	 composition	
relation	 between	 situations.	 For	 example,	 a	 ‘Cold	 VM	migrating’	 situation	 is	 composed	 of	 a	 ‘Relocating	
configuration	 and	 storage	 files’	 situation,	 a	 ‘Moving	 VM	 to	 new	host’	 situation	 and	 a	 ‘Powering	 off	 VM’	
situation.	According	to	our	metamodel	aggregating	SimpleEvents	and	ComplexEvents	we	acquire	the	related	
MonitoringInformation	which	is	necessary	for	checking	the	health	status	and	QoS	of	both	the	deployed	big	
data	 intensive	 application	 and	 the	 underlying	 multi-cloud	 and	 edge	 resources.	 Thus,	 all	 the	
MonitoringInformation	 is	 based	 on	 the	 Processing,	 HostingEdgeNodes,	 HostingCloudNodes	 and	 current	
Workload	detected	through	the	appropriate	software,	hardware	and	workload	related	monitoring	probes,	
respectively.	 Both	 Processing	 and	Workload	 are	 expressed	 based	 on	 the	 BigDataVocabulary	 in	 order	 to	
abstractly	map	types	of	big-data	streams	to	big	data	processing	services	types	revealing	their	 importance	
for	the	detected	PrEstoCloudSituations.	The	BigDataVocabulary	was	discussed	in	the	deliverable	D2.5	and	
refers	to	an	external	class	that	includes	all	the	concepts	and	properties	to	be	used	for	describing	Big	Data	
characteristics	that	should	be	considered	for	making	Big	Data	application	placement	decisions.	

3.2 Situation	Detection	Approach	
In	industry,	cloud	platforms	that	support	automatic	or	semi-automatic	adaptation	use	event	driven	rules	in	
order	to	decide	the	time	of	adaptation.	Amazon	AWS,	for	example,	provides	auto-scaling	services	(Amazon	
2018	that	trigger	adaptation	actions	based	on	user-configurable	rules	that	are	evaluated	in	real-time	using	
internal	or	external	monitoring	 infrastructure.	Kubernetes	 (2018)	provides	auto-scaling	capabilities	based	
on	internal	or	external	metrics.	In	Google	Cloud	(2018),	users	can	specify	a	target	CPU	utilisation	for	a	group	
of	 (service)	 instances,	the	platform	will	 try	to	maintain	 it	by	scaling	 it	up	or	down.	OpenStack	(2018)	also	
supports	auto-scaling	policies	by	deploying	the	Heat	service.	Autoscaling	in	OpenstackHeat	is	triggered	by	
Alarms	 produced	 by	 the	 telemetry	 service	 (Ceilometer).	 In	 research	 approaches	 situation	 detection	 has	
been	performed	with	several	advanced	techniques	as	described	in	Chapter	2	of	this	document.			

Since,	 the	PrEstoCloud	environment	combines	multi-cloud	and	edge	 resources,	we	need	a	mechanism	to	
detect	 situations	 from	 heterogeneous	 devices	 and	 services	 with	 very	 different	 capabilities	 in	 terms	 of	
computational	resources	and	provide	the	ability	to	control	and	customize	the	execution	environment.	For	
example	 edge	 devices	may	 have	 very	 low	 computational	 resources	 or	 a	 very	 restricted	 (due	 to	 security	
reasons)	 environment	 for	 custom	 applications.	 Very	 often	 those	 devices	 have	 low	 network	 bandwidth,	
unpredictable	disconnections	 from	the	network	and	data	 transmission	spikes	 that	are	caused	by	external	
events	(such	as	social	events,	weather	conditions	or	other).	In	this	environment	we	need	infrastructure	and	
mechanisms	for	data-driven	event	detection.	Therefore,	we	opted	for	an	approach	that	relies	on	complex	
event	 processing	 technologies,	 which	 are	 capable	 of	 processing	 in	 real-time	 a	 large	 number	 of	 events	
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generated	by	a	variety	of	distributed	cloud	and	edge	computing	resources	as	well	as	other	data	generating	
sensors.	A	complex	event	is	an	event	derived	from	a	group	of	events	using	either	aggregation	of	derivation	
functions.	 Information	enclosed	 in	a	 set	of	 related	events	 can	be	 represented	 (i.e.,	 summarized)	 through	
such	a	complex	event.		

Arguably,	 situation	 detection	 in	 a	 big-data	 generating	 and	 distributed	 environment	 such	 as	 PrEstoCloud	
needs	to	take	care	of	network	bandwidth	consumption.	Similarly,	to	commercial	systems,	it	is	important	to	
support	parts	of	the	situation	detection	at	the	edge.	For	example	Cisco	routers	with	Cisco	IOS®	XE	(2018)	
are	able	to	run	KVM	virtual	machines	or	LXC	containers.	In	many	use	cases,	it	would	be	desirable	to	deploy	
situation	 detection	 services	 near	 the	 edge	 or	 at	 the	 extreme	edge.	 In	 this	way	we	 could	 lower	 resource	
consumption	 in	 the	 cloud,	 limit	 the	 required	bandwidth	or	process	events	 from	edge	devices	with	 lower	
latency	and	lower	rates	of	event	loss	(due	to	network	outages	at	the	extreme	edge).	So,	it	is	crucial	for	the	
situation	 detection	mechanism	 to	 have	 low	 computation	 resource	 consumption	 (memory	 and	 CPU)	 and	
ability	to	efficiently	distribute	and	process	events	in	multiple	stages.		

The	 approach	 that	 we	 propose	 for	 realising	 situation	 detection	 in	 PrEstoCloud	 has	 the	 following	
characteristics:	

-	 A	 homogenous	 solution	 for	 data	 intensive	 and	 data-driven	 situation	 detection	 at	 the	 edge	 or	 near	 the	
edge	and	in	the	cloud.	

-	 Components	 (containers)	 that	 can	 be	 deployed	with	 existing	 cloud	 orchestration	 technologies	 (such	 as	
Kubernetes	 (https://kubernetes.io/),	 Rancher	 (https://rancher.com/),	 Ansible	 (https://www.ansible.com/)		
or	the	technologies	that	PrEstoCloud	develops.	

-	 A	 distributed	 hierarchical	 approach	 for	 event-driven	 and	 rule-based	 situation	 detection	 with	 complex	
event	patterns.	
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4. Architecture	and	Implementation		
This	 section	 presents	 the	 conceptual	 architecture	 of	 SDM	 as	 well	 as	 two	 concrete	 instantiations	 of	 the	
conceptual	architecture.	We	also	present	a	walkthrough	of	how	to	deploy	SDM.		

4.1 Situation	Detection	Mechanism	Architecture	
Figure	3	depicts	the	conceptual	architecture	of	SDM.	The	architecture	includes	the	PrEstoCloud	distributed	
broker	engine	(D3.1),	which	serves	as	the	event	messaging	and	routing	backbone	 in	PrEstoCloud.	Metrics	
from	the	cloud	 infrastructure	 (physical	and	virtual	machines,	 containers,	applications,	 services,	etc.	 )	 and	
edge	devices	(mobile	phones,	drones,	IoT	devices)	are	published	as	events	to	the	Broker	in	specific	topics.	
One	 or	more	 SDM	 service	 instances	 subscribe	 to	 the	 desired	 topics	 and	 receive	 streams	 of	 events	 that	
contain	up-to-date	information	about	the	current	state	of	those	entities	(e.g.	used	RAM,	CPU	consumption,	
disk	I/O,	requests	per	second,	etc.).	

	

	
Figure	3	-	PrEstoCloud	Situation	Detection	Architecture	

The	 SDM	 instances	 process	 these	 events	 based	 on	 the	 supplied	 CEP	 rules	which	 are	 defined	 in	 order	 to	
detect	interesting	situations.	Several	SDM	instances	can	be	used	in	parallel	or	in	series	in	order	to	process	
the	incoming	event	streams.	High	level	situations	can	be	detected	by	processing	low-level	situations	from	
many	 SDM	 instances.	 The	 final	 consumer	 of	 the	 situations	 that	 are	 detected	 by	 the	 SDM	 is	 be	 the	
PrEstoCloud	Adaptation	Recommender,	which	will	be	delivered	in	the	upcoming	deliverable	D5.5.	
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4.2 Implementation	
	

The	 Situation	 Detection	Mechanism	 has	 been	 developed	 in	 Java.	 It	 can	 be	 deployed	 as	 a	 set	 of	 Docker	
containers.	The	Java	source	code	and	the	Docker	configuration	files	are	uploaded	on	gitlab:		

https://gitlab.com/prestocloud-project/situation-detection-mechanism.git	.	

SDM	receives	events	from	the	Communication	and	Message	Broker,	which	is	implemented	by	a	RabbitMQ	
container.	RabbitMQ,	which	has	been	used	to	implement	the	PrEstoCloud		Communication	Broker	(D3.1),	
supports	different	transport	and	messaging	protocols	such	as	the	different	versions	of	AMPQ		(0-9-1,	0-8-1,	
1.0),	MQTT,	STOMP,	JSON-RPC	over	HTTP	and	Web-STOMP.	A	Logstash	Docker	container	can	be	used	for	
the	preprocessing	of	 the	 incoming	events.	 Logstash	 can	 subscribe	 to	RabbitMQ	 topics,	 process	 incoming	
events,	and	publish	the	events	back	to	RabbitMQ	(in	different	topics).	In	our	use	cases	some	very	common	
tasks	assigned	to	Logstash	included	the	transformation	of	the	event	payload	(from	CSV	to	JSON,	or	from	an	
initial	JSON	format	to	a	JSON	format	with	additional	fields)	and	the	mapping	of	different	event	types	to	new	
topics	 based	 on	 which	 were	 extracted	 from	 the	 event	 payload.	 Logstash	 can	 be	 used	 also	 as	 an	 input	
interface	 that	 can	 support	 additional	messaging	 protocols	 like	 UDP,	 Graphite,	 UDP,	 XMPP	 or	 Beats	with	
different	input	plugins	(https://www.elastic.co/guide/en/logstash/current/input-plugins.html).		

After	pre-processing,	the	input	events	are	published	through	RabbitMQ	to	a	Docker	container	that	embeds	
and	 runs	 a	 CEP	 engine.	 We	 demonstrate	 that	 the	 implementation	 of	 the	 proposed	 approach	 can	 be	
agnostic	to	the	CEP	engine	used.	This	allows	the	PrEstoCloud	adopter	to	use	the	engine	of	his	or	her	choice	
based	on	the	characteristics	of	the	monitored	big	data-intensive	application	and	her	expertise	with	event	
processing	software.	There	are	many	CEP	libraries	that	can	be	used	at	this	stage	with	SDM	such	as	Drools,	
WSO2	Siddhi	and	Esper.	 	The	basic	functional	requirements	from	the	CEP	Docker	container	 include	the	a)	
ability	to	read	all	the	necessary	configuration	(input	parameters	and	topics,	output	parameters	and	topics,	
rules)	from	files	or	environment	variables,	b)	the	ability	to	consume	events	from	RabbitMQ	in	JSON	format,	
c)	the	ability	to	produce	new	events	that	denote	the	detection	of	a	situation,	d)	the	ability	to	publish	events	
to	RabbitMQ	 in	 JSON	 format	 ,	 d)	 the	 ability	 to	 read,	 process,	 and	produce	different	 JSON	event	 formats	
dynamically	by	changing	only	the	rule	file	(without	the	need	for	example	to	write	and	compile	new	code	in	
Java	or	any	other	programming	language	in	order	to	create	new	event	models).	

It	 may	 be	 very	 critical	 for	 the	 selected	 CEP	 library	 to	 present	 the	 lowest	 possible	 computing	 resource	
consumption,	 latency	or	footprint	as	well	as	the	maximum	throughput.	This	depends	on	the	environment	
that	a	CEP	container	is	deployed	(cloud,	edge,	extreme	edge),	the	type	of	situations	that	it	will	be	instructed	
to	 detect,	 and	 the	 expected	 input	 workload	 (in	 terms	 of	 events	 per	 second).	 Important	 factors	 for	 the	
selection	 of	 a	 CEP	 library	 are	 also	 the	 expressivity	 of	 the	 supported	 rule	 description	 language	 and	 the	
complexity	from	the	user’s	point	of	view	for	the	implementation	of	the	required	CEP	patterns.	

In	this	first	version	of	SDM,	we	have	selected	and	compared	two	different	CEP	libraries,	the	WSO2	Siddhi	4	
and	 the	Drools	 CEP	 engine.	 Both	 are	 distributed	with	 open	 source	 licenses.	 Drools	 is	 a	widely	 used	 rule	
engine	and	CEP	 library,	which	PrEstoCloud	partners	have	successfully	used	 in	previous	projects	and	have	
gained	substantial	experience.	Siddhhi	on	the	other	hand	is	newer	and	is	reported	to	offer	state	of	the	art	
performance	when	compared	to	other	libraries	including	Esper	(Dayrathna	and	Perera,	2018).		
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Figure	4.	Situation	Detection	Mechanism	(Siddhi-based)	

Siddhi	 CEP	 patterns	 are	 implemented	 in	 the	 SQL-like	 rule	 language	 SiddhiQL.	 It	 supports	 out-of-the	 box	
extensions	that	can	interface	directly	with	RabbitMQ	(WSO2	2018)	and	map	JSON	events	to	event	streams	
(WSO2	2018b).	In	the	following	figure	(Figure	4)	we	can	see	a	grounded	architecture	diagram	of	SDM	that	
uses	Siddhi,	Logstash	and	RabbitMQ.	

	

	
Figure	5	-	Situation	Detection	Mechanism	(Drools-based)	
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Figure	5	depicts	an	implementation	of	SDM	with	Drools	as	the	CEP	container.	Drools	was	initially	developed	
as	a	rule	engine.	In	Drools,	rules	and	facts	constitute	a	knowledge	base.	Rules	are	present	in	the	production	
memory	 and	 the	 facts	 are	 kept	 in	 a	 database	 called	 working	 memory,	 which	 maintains	 current	 system	
knowledge.	 There	 is	 an	 Inference	 Engine	 based	 on	 Charles	 Forgy’s	 Rete	 Algorithm,	 which	 efficiently	
matches	the	facts	from	working	memory	to	conditions	of	the	rules	in	the	production	memory.	Knowledge	
based	 systems	 require	 a	 conflict	 resolution	 is	 required	when	 there	 are	multiple	 rules	 on	 the	 agenda.	 As	
firing	a	rule	may	have	side	effects	on	working	memory,	the	rule	engine	needs	to	know	in	what	order	the	
rules	should	fire	(for	instance,	firing	‘ruleA’	may	cause	‘ruleB’	to	be	removed	from	the	agenda).	The	default	
conflict	 resolution	 strategies	 employed	 by	Drools	 are:	 Salience	 and	 LIFO	 (last	 in,	 first	 out),	 (JBoss	 2013).	
Later,	new	functionalities	were	added	allowing	Drools	to	perform	complex	event	processing.	The	CEP	rules	
in	Drools	CEP	are	Event	Condition	Action	(ECA)-style	rules.		

In	 the	 case	 of	 the	 Drools	 based	 implementation	 of	 SDM,	 we	 have	 implemented	 in	 Java	 two	 additional	
classes.	 The	 EventLoader	 class	 subscribes	 to	 RabbitMQ	 topics	 and	 converts	 input	 JSON	 events	 to	 Java	
Objects.	The	SituationPublisher	converts	output	situation	events	from	Java	to	JSON	and	publishes	them	to	
the	 configured	RabbitMQ	 topic.	 In	both	 these	 implementations,	we	have	used	 the	RabbitMQ	 Java	Client	
Library	 (https://www.rabbitmq.com/java-client.html)	 and	 the	 google-gson	 JSON	
serialization/deserialization	library	(https://github.com/google/gson).	The	EventLoader	class	converts	JSON	
events	to	 instances	of	 the	JsonObject	class.	The	rule	 language	of	Drools	CEP	allow	to	declaratively	define	
new	event	types	and	access	JsonObject	fields	,	as	shown	in	the	following	example	:	

	

declare JsonObject 
  @role ( event ) 
end 
 
declare CPUEvent 
  @role( event ) 
  @timestamp( edate )   
  edate: Date @key 
  cpu: Double 
end 
 
rule "parseCPUEvent" 
when 
   $event : JsonObject() from entry-point INPUT 
then 
   SimpleDateFormat sdf = new SimpleDateFormat("yy.MM.dd'_'HH.mm.ss"); 
   Date edate = sdf.parse( $event.get("ts").getAsString() ); 
   Integer cpu = $event.get("cpu_load_pct").	getAsDouble(); 
   CPUEvent $c = new CPUEvent(edate, cpu); 
   insert($c); 
end 

	

In	this	way	we	are	able	to	read	and	process	any	JSON-formatted	event	with	Drools	CEP	without	the	need	to	
write	and	compile	new	code	in	Java	for	each	use	case.	Drools	CEP	on	startup	reads	the	rule	file	which	can	
contain	 expressions	 in	 a	 scripting	 language	 that	 is	 able	 to	 call	 Java	 Object	methods	 (as	we	 have	 shown	
above),	parses	it	and	converts	it	in	runtime	in	Java	Objects.		

With	 CEP	 engines	we	 can	 detect	 situations	with	 complex	 temporal	 event	 patterns.	 For	 example	we	 can	
detect	if	after	CPU	utilization	was	detected	above	90%,	it	was	detected		again		in	a	period	of	ten	to	twenty	
seconds	after	the	first	event.	

	

rule "cpu > 90.0 again after 10 to 20 sec" 
when 
   $e2 : CPUEvent( cpu > 90.0 )  
   $e1 : CPUEvent( cpu > 90.0 , this != $e2, this after[ 10s, 20s ] $e2 )  



PrEstoCloud	GA	732339	Deliverable	D5.1	
“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	

	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 20	

then 
   log("TEMPORAL1: cpu>90.0 twice after 10s-20s triggered by : " + $e1 + " & " + 
$e2) ; 
end 
	

Or	we	can	detect	 that	 in	a	 time	period	 that	 spans	 from	10	 seconds	before	 to	 ten	 seconds	after	 the	CPU	
utilization	was	above	80%	an	event	that	denotes	that	used	memory	was	also	above	80%.	

	

rule "memory and cpu events coincide" 
when 
   $e2 : CPUEvent( cpu > 80.0 )  
   $e1 : MemoryEvent( used > 80.0 , this coincides [ 10s, 10s ] $e2 )  
then 
   log("TEMPORAL2: cpu>80.0 and mem>80.0 coincide: " + $e1 + " & " + $e2) ; 
end 
	

4.3 Execution	Walkthrough	
In	this	section,	we	describe	how	SDM	can	be	used	in	order	to	detect	situations	from	one	or	more	services.	
For	 the	 purposes	 of	 this	 walkthrough,	 we	 assume	 that	 services	 run	 a	 Netdata	 metric	 collection	 agent	
(http://my-netdata.io/).		Netdata	is	an	agent	that	can	be	installed	on	systems	that	run	different	flavours	of	
Linux	or	MacOS.	It	can	collect	over	5000	different	metrics	from	the	operating	system	and	from	a	plethora	of	
applications	 (databases,	 application	 servers,	web	 servers,	 etc.).	Netdata	 can	 be	 configured	 to	 export	 the	
collected	 metrics	 to	 a	 backend	 (https://github.com/firehol/netdata/wiki/netdata-backends).	 If	 we	
configure	 the	 Graphite	 type	 backend	 we	 can	 send	 the	 metrics	 to	 a	 Logstash	 service	 over	 the	 Graphite	
protocol	(Figure	6).			

	

	
Figure	6	–	Situation	Detection	Mechanism	processing	messages	from	Netdata	

	

The	graphite	protocol	encodes	metrics	in	a	plain	text	format	which	contains	on	metric	per	line	along	with	
the	value	of	the	metric	and	a	timestamp	separated	by	spaces,	as	depicted	bellow:	

	

netdata.mysrv1.system.cpu.irq  1.7481766  1525950748 
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netdata.mysrv1.system.cpu.user  30.8244400  1525950748 

netdata.mysrv1.system.cpu.system  5.7389183  1525950748 

netdata.mysrv1.system.cpu.nice  0.1666761  1525950748 

netdata.mysrv1.system.cpu.iowait  14.7725093  1525950748 

netdata.mysrv1.system.cpu.idle  46.7492800  1525950748 

netdata.mysrv1.system.cpu.guest_nice  0.0000000  1525950751 

netdata.mysrv1.system.cpu.guest  0.0000000  1525950751 

	

Logstash	with	 the	 appropriate	 pipeline	 configuration	 (example	 in	 Appendix	 8.2)	 can	 convert	 the	metrics	
from	Netdata	to	JSON	and	publish	them	to	RabbitMQ	topics	that	are	defined	dynamically	by	the	Netdata	
metric	name.	For	example	Logstash	will	publish	the	metric	with	name	“netdata.mysrv1.system.cpu.user”	to	
a	 RabbitMQ	 topic	 with	 the	 same	 name	 and	 so	 on. An	 SDM	 instance	 running	 Siddhi	 or	 Drools	 can	 be	
configured	to	subscribe	to	these	topics	(in	Appendix	8.3	we	show	a	Siddhi	rule	file	that	subscribes	to	two	
RabbitMQ	topics). 	

In	 the	remaining	part	of	 this	section	we	present	the	steps	needed	for	starting	and	running	SDM.	Docker-
compose	 configures	 and	 runs	 one	 RabbitMQ	 service,	 one	 Logstash	 service,	 one	 Siddhi	 CEP	 engine	 and	
multiple	instances	of	Linux	containers	that	run	Netdata.	We	are	using	the	(container)	scaling	capabilities	of	
Docker-Compose	to	increase	or	decrease	the	Docker	containers	that	run	Netdata.	The	Docker-compose	file	
is	 included	in	Appendix	8.1.	An	example	of	the	Netdata	backend	configuration	section	of	its	configuration	
file	(netdata.conf)	 is	 included	in	Appendix	8.4.	 	 It	shows	how	to	configure	a	graphite	backend	with	metric	
filtering.	

Step	1:	Prepare	the	docker-compose	images	
With	the	following	commands	we	can	build	and	prepare	all	the	Docker	containers.	
 
 
$ docker-compose build 
 
Successfully built 663056462f28 
Successfully tagged sdmubidemo_netdata:latest 
 
 
$ touch sdmsrv2/resources.netdata/RULES.siddhi 
 
 

Step	2:	Start	rabbitmq	service		
First,	we	start	the	rabbitmq	service.	All	other	services	depend	on	this.	

 
$ docker-compose up -d rabbitmq 
Creating network "sdmubidemo_esnet" with the default driver 
Creating sdmubidemo_rabbitmq_1 ... done 

	

If	we	check	the	logs	we	can	confirm	that	rabbitmq	was	started	successfully	when	we	see	the	following	lines:	

	

$docker-compose logs –f rabbitmq 	
rabbitmq_1  | 2018-05-18 20:39:42.293 [info] <0.5.0> Server startup complete; 3 plugins 
started. 
rabbitmq_1  |  * rabbitmq_management 
rabbitmq_1  |  * rabbitmq_management_agent 
rabbitmq_1  |  * rabbitmq_web_dispatch 
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Step	3:	Start	the	logstash	service	
Logstash	subdcribes	to	RabbitMQ	topics	when	it	starts.	With	the	following	command	we	can	start	the	
logstash	service	after	we	check	that	rabbitmq	has	started.	

$ docker-compose up -d logstash 
sdmubidemo_rabbitmq_1 is up-to-date 
Creating sdmubidemo_logstash_1 ... done 

	

If	we	check	the	logs	we	can	confirm	that	logstash	was	started	successfully	when	we	see	the	following	lines	.	

$docker-compose logs –f logstash 	
logstash_1  | [2018-05-18T20:42:14,183][INFO ][logstash.runner          ] Starting 
Logstash {"logstash.version"=>"6.2.0"} 
logstash_1  | [2018-05-18T20:42:14,706][INFO ][logstash.agent           ] Successfully 
started Logstash API endpoint {:port=>9600} 
logstash_1  | [2018-05-18T20:42:18,799][INFO ][logstash.pipeline        ] Starting 
pipeline {:pipeline_id=>"main", "pipeline.workers"=>2, "pipeline.batch.size"=>125, 
"pipeline.batch.delay"=>50} 
logstash_1  | [2018-05-18T20:42:19,317][INFO ][logstash.outputs.rabbitmq] Connected to 
RabbitMQ at 
logstash_1  | [2018-05-18T20:42:19,798][INFO ][logstash.inputs.graphite ] Automatically 
switching from plain to line codec {:plugin=>"graphite"} 
logstash_1  | [2018-05-18T20:42:19,854][INFO ][logstash.inputs.graphite ] Starting tcp 
input listener {:address=>"0.0.0.0:5000", :ssl_enable=>"false"} 
logstash_1  | [2018-05-18T20:42:20,084][INFO ][logstash.pipeline        ] Pipeline 
started succesfully {:pipeline_id=>"main", :thread=>"#<Thread:0x793fbce6 run>"} 
logstash_1  | [2018-05-18T20:42:20,220][INFO ][logstash.agent           ] Pipelines 
running {:count=>1, :pipelines=>["main"]} 

 

Step	4:	Start	the	sdmsrv2	service	(Siddhi	CEP	engine)	
The	sdmsrv2	service	executes	a	Siddhi	instance.	When	we	see	the	message	“CEP	STARTED	NETDATA	INPUT”	
the	service	has	started	successfully.	

$ docker-compose up sdmsrv2 
sdmubidemo_rabbitmq_1 is up-to-date 
sdmubidemo_logstash_1 is up-to-date 
Creating sdmubidemo_sdmsrv2_1 ... done 
Attaching to sdmubidemo_sdmsrv2_1 
sdmsrv2_1   | [INFO] Scanning for projects... 
sdmsrv2_1   | [INFO] 
sdmsrv2_1   | [INFO] -----------------------< gr.iccs.presto:sdmsrv2 >------------------
----- 
sdmsrv2_1   | [INFO] Building sdmsrv2 1.0-SNAPSHOT 
sdmsrv2_1   | [INFO] --------------------------------[ jar ]----------------------------
----- 

	
sdmsrv2_1   | Created inputstream from : RULES.siddhi 
sdmsrv2_1   | copy ok 
sdmsrv2_1   | LOADED RULES.siddhi . 
sdmsrv2_1   | 23:44:54 : CEP STARTED NETDATA INPUT 
 
 
 

Step	5a:	Start	2	Netdata	containers	(event	producers) 
The	service	netdata	simulates	a	scalable	micro-service	which	sends	metrics	about	 its	state	to	SDM	with	a	
Netdata	agent.	With	docker-compose,	we	can	scale	this	service	up	and	down	by	 increasing	or	decreasing	
the	number	of	 containers	 that	 execute	 it.	 The	 supplied	 SDM	 rules,	 in	 Siddhi	 rule	 format,	 count	every	10	
seconds	the	number	of	distinct	netdata	instances	by	processing	the	events	that	they	publish	to	RabbitMQ	
through	 Logstash.	 As	 shown	 in	 the	 following	 example	 if	 we	 start	 2	 netdata	 service	 instances	 (with	 the	
docker-compose	option	–scale)	we	must	see	after	some	seconds	the	message	“HOSTCNT	:	DISTINCT	HOSTS	
LAST	10s	:	2”.	
 
$ docker-compose up -d --scale netdata=2 netdata 
sdmubidemo_rabbitmq_1 is up-to-date 
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The "netdata" service specifies a port on the host. If multiple containers for this 
service are created on a single host, the port will clash. 
Creating sdmubidemo_netdata_1 ... done 
Creating sdmubidemo_netdata_2 ... done 
 
 
sdmsrv2_1   | ------------------------------------------------------- 
sdmsrv2_1   |  T E S T S 
sdmsrv2_1   | ------------------------------------------------------- 
sdmsrv2_1   | Running gr.iccs.presto.AppTest 
sdmsrv2_1   | Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.014 sec 
sdmsrv2_1   | 
sdmsrv2_1   | Results : 
sdmsrv2_1   | 
sdmsrv2_1   | Tests run: 1, Failures: 0, Errors: 0, Skipped: 0 
sdmsrv2_1   | 
sdmsrv2_1   | [INFO] 
sdmsrv2_1   | [INFO] >>> exec-maven-plugin:1.1.1:java (default) > validate @ sdmsrv2 >>> 
sdmsrv2_1   | [INFO] 
sdmsrv2_1   | [INFO] <<< exec-maven-plugin:1.1.1:java (default) < validate @ sdmsrv2 <<< 
sdmsrv2_1   | [INFO] 
sdmsrv2_1   | [INFO] 
sdmsrv2_1   | [INFO] --- exec-maven-plugin:1.1.1:java (default) @ sdmsrv2 --- 
sdmsrv2_1   | Created inputstream from : RULES.siddhi 
sdmsrv2_1   | copy ok 
sdmsrv2_1   | LOADED RULES.siddhi . 
sdmsrv2_1   | 00:14:30 : CEP STARTED NETDATA INPUT 
sdmsrv2_1   | 00:14:40 : HOSTCNT : DISTINCT HOSTS LAST 10s : 2 
sdmsrv2_1   | 00:14:40 : ALLCPUAVG : Average CPU of all hosts LAST 10s : 
42.48388320207596 
sdmsrv2_1   | 00:14:46 : HOSTCPUAVG : sdmubidemo_netdata_1.sdmubidemo_esnet: 15 sec avg 
cpu.idle=65.87990093231201 
sdmsrv2_1   | 00:14:46 : HOSTCPUMAX : sdmubidemo_netdata_1.sdmubidemo_esnet: 15 sec max 
cpu.user=79.72789 
sdmsrv2_1   | 00:14:46 : HOSTCPUAVG : sdmubidemo_netdata_2.sdmubidemo_esnet: 15 sec avg 
cpu.idle=65.881844997406 
sdmsrv2_1   | 00:14:46 : HOSTCPUMAX : sdmubidemo_netdata_2.sdmubidemo_esnet: 15 sec max 
cpu.user=79.720535 
sdmsrv2_1   | 00:14:49 : ALLCPUAVG : Average CPU of all hosts LAST 10s : 
3.3208606243133545 
sdmsrv2_1   | 00:14:49 : HOSTCNT : DISTINCT HOSTS LAST 10s : 2 
sdmsrv2_1   | 00:15:01 : HOSTCPUMAX : sdmubidemo_netdata_2.sdmubidemo_esnet: 15 sec max 
cpu.user=4.4910984 
sdmsrv2_1   | 00:15:01 : HOSTCNT : DISTINCT HOSTS LAST 10s : 2 
sdmsrv2_1   | 00:15:01 : HOSTCPUAVG : sdmubidemo_netdata_2.sdmubidemo_esnet: 15 sec avg 
cpu.idle=95.87651672363282 
sdmsrv2_1   | 00:15:01 : HOSTCPUAVG : sdmubidemo_netdata_1.sdmubidemo_esnet: 15 sec avg 
cpu.idle=95.87651672363282 
sdmsrv2_1   | 00:15:01 : HOSTCPUMAX : sdmubidemo_netdata_1.sdmubidemo_esnet: 15 sec max 
cpu.user=4.4910984 
sdmsrv2_1   | 00:15:01 : ALLCPUAVG : Average CPU of all hosts LAST 10s : 
3.161834269762039 

 

Step	5b:	Start	8	additional		Netdata	containers	(scale	up	to	10	Netdata	containers) 
If		we	scale	up	netdata	to	10	instances	(with	the	docker-compose	option	–scale),	we	see	after	some	seconds	
the	message	“HOSTCNT	:	DISTINCT	HOSTS	LAST	10s	:	10”.	

$ docker-compose up -d --scale netdata=10 netdata 
sdmubidemo_rabbitmq_1 is up-to-date 
The "netdata" service specifies a port on the host. If multiple containers for this 
service are created on a single host, the port will clash. 
Starting sdmubidemo_netdata_1 ... done 
Starting sdmubidemo_netdata_2 ... done 
Starting sdmubidemo_netdata_3 ... done 
Starting sdmubidemo_netdata_4 ... done 
Starting sdmubidemo_netdata_5 ... done 
Creating sdmubidemo_netdata_6  ... done 
Creating sdmubidemo_netdata_7  ... done 
Creating sdmubidemo_netdata_8  ... done 
Creating sdmubidemo_netdata_9  ... done 
Creating sdmubidemo_netdata_10 ... done 
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If	we	 check	 the	 log	we	 can	 see	 that	 SDM	detects	 after	 some	 seconds	 that	 10	 distinct	 hosts	 are	 sending	
metrics.	

	

sdmsrv2_1   | 00:21:01 : HOSTCNT : DISTINCT HOSTS LAST 10s : 10 
sdmsrv2_1   | 00:21:01 : ALLCPUAVG : Average CPU of all hosts LAST 10s : 
3.8740233212709425 

	

Step	5c:	Stop	8	Netdata	containers	(scale	down	to	2)	
If	 	 we	 scale	 down	 netdata	 to	 2	 instances	 (with	 the	 docker-compose	 option	 –scale),	 we	 see	 after	 some	
seconds	the	message	“HOSTCNT	:	DISTINCT	HOSTS	LAST	10s	:	2”.	

$ docker-compose up -d --scale netdata=2 netdata 
sdmubidemo_rabbitmq_1 is up-to-date 
The "netdata" service specifies a port on the host. If multiple containers for this 
service are created on a single host, the port will clash. 
Stopping and removing sdmubidemo_netdata_3  ... done 
Stopping and removing sdmubidemo_netdata_4  ... done 
Stopping and removing sdmubidemo_netdata_5  ... done 
Stopping and removing sdmubidemo_netdata_6  ... done 
Stopping and removing sdmubidemo_netdata_7  ... done 
Stopping and removing sdmubidemo_netdata_8  ... done 
Stopping and removing sdmubidemo_netdata_9  ... done 
Stopping and removing sdmubidemo_netdata_10 ... done 
Starting sdmubidemo_netdata_1               ... done 
Starting sdmubidemo_netdata_2               ... done 

	

If	we	 check	 the	 log	we	 can	 see	 that	 SDM	detects	 after	 some	 seconds	 that	now	only	 2	distinct	hosts	 are	
sending	metrics.	

	

sdmsrv2_1   | 00:22:31 : ALLCPUAVG : Average CPU of all hosts LAST 10s : 
0.7142319902777672 
sdmsrv2_1   | 00:22:31 : HOSTCNT : DISTINCT HOSTS LAST 10s : 2 
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5. Evaluation	
	

In	 Section	 4,	 we	 described	 the	 implementation	 of	 the	 SDM	 services.	 We	 have	 used	 two	 different	 CEP	
engines,	 Drools	 and	 Siddhi,	 along	 with	 our	 custom	 components.	 In	 this	 section	 we	 will	 evaluate	 and	
compare	 these	 implementations	 of	 SDM.	 We	 will	 present	 two	 experiments.	 In	 both	 experiments	 the	
software	and	hardware	configuration	is	the	same:	

• Hardware		

– A	KVM	Virtual	Machine	with	4	cores	and	8GB	RAM	running	on	a	server	with	Intel	Xeon	E7	@	2.4	
Ghz	CPU	

• Software		

– SDM	services	run	under	Ubuntu	17.10	with	the	following	software	packages	installed:	

• Docker	version	17.12.0-ce,	build	c97c6d6	

• Docker-compose	version	1.19.0,	build	9e633ef		

• OpenJDK	Runtime	Environment	(build	1.8.0_171-8u171-b11-0ubuntu0.17.10.1-b11)		

• Container-based	libraries:	

• Siddhi	version	v4.0.0 with RabbitMQ extension v1.0.14	

• Drools	version	6.5.0.Final	

• RabbitMQ	3.7.5	(Docker	image	rabbitmq3.7.5-management)	

	

5.1 Experiment	1	(Load-test	with	PerfTest)	
In	 this	 experiment	 the	 RabbitMQ	 load-testing	 tool	 is	 used	 to	 generate	 and	 publish	 events	
(https://github.com/rabbitmq/rabbitmq-perf-test)	 to	SDM	services	 (through	a	RabbitMQ	instance)	 (Figure	
7).	 In	 this	experiment,	we	use	only	RabbitMQ	and	two	SDM	instances,	one	 implemented	with	 the	Drools	
CEP	library	and	one	implemented	with	the	Siddhi	library.	With	PerfTest	we	can	select	the	number	of	event	
producers,	 the	 length	 of	 the	 period	 that	 we	 want	 to	 send	 events,	 the	 frequency	 with	 which	 the	 event	
producers	should	generate	events	and	the	payload	of	the	events	(from	a	list	of	files).	The	AMQP	exchange	
name	and	the	topic	are	also	configurable.	

	

	
Figure	7	-	Experiment	1	(Load-testing	SDM	with	PerfTest)	

	

With	a	Java	Management	Extensions	(JMX)	tool	such	as	JConsole	or	VisualVM	(https://visualvm.github.io/)	
we	can	monitor	many	metrics	of	Java	applications.	We	use	JMX	to	monitor	the	Drools	and	Siddhi	version	of	
SDM.	We	 run	 (with	 docker-compose)	 one	 Siddhi	 CEP	 engine	 and	 one	 Drools	 CEP	 engine	 in	 parallel	 and	
configure	them	to	subscribe	to	the	same	AMQP	exchange	and	topic.	In	this	way	both	CEP	engines	receive	
the	same	events	from	PerfTest.		

The	payload	of	the	events	is	a	JSON	file	that	contains	different	values	of	two	attributes	named	“memory”	
and	“cpu”,	(without	any	timestamp	for	simplification	reasons)	like	the	following:	
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{ 

"event": { 

"cpu": 45.0, 

"memory": 37.0 

} 

} 

Both	Drools	and	Siddhi	were	configured	to	produce	every	10	sec	two	events	containing:	

• The	average	CPU	and	MEMORY	(during	the	last	10s)	

• The	number	of	MEMORY	and	CPU	events	that	it	received	(during	the	last	10s)	

	

In	 the	 following	 series	 of	 diagrams	 we	 can	 see	 some	 representative	 results.	 All	 diagrams	 have	 been	
generated	 using	 a	 python	 Jupyter	 notebook	 with	 the	 pandas	 0.23	 (https://pandas.pydata.org)	 and	
matplotlib	(https://matplotlib.org)	libraries.			

First	we	run	PerfTest	 for	60	seconds	with	 increasing	number	of	event	producers	that	send	one	event	per	
second.		

	
Figure	8.	SDM	load	testing	with	PerfTest.	CPU	utilization	of	Drools-based	implementation	vs	Siddhi-based	

implementation	(500,500,1000	events/sec)	

In	Figure	8,	we	compare	the	CPU	consumption	of	Drools	and	Siddhi	while	sending	500	events	per	second	
(twice)	and	1000	events	per	second,	for	two	consecutive	periods	of	60	seconds.	We	can	clearly	see	that		the	
Siddhi-based	 implementation	 of	 SDM	 has	 much	 lower	 total	 CPU	 utilization	 than	 the	 Drools-based	
implementation	which	increases	in	a	bigger	proportion	as	the	rate	of	incoming	events	increases.	
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Figure	9.	SDM	load	testing	with	PerfTest.	CPU	utilization	of	Drools-based	implementation	vs	Siddhi-based	

implementation	(1250	to	3000	events/sec)	

In	Figure	9,	we	continue	the	same	experiment	with	increasing	number	of	events	per	second	(generated	by	
PerfTest)	:	1250,	1500,	1750,	2000,	2250,	3000.	It	is	again	clear	that	Siddhi	has	much	lower	CPU	utilisation.	
It	 is	also	notable	that	after	1500	events	per	second	the	Drools-based	implementation	of	SDM	queues	the	
incoming	messages	and	continues	processing	an	increasing	number	of	seconds	after	PerfTest	has	finished	
sending	events.	Siddhi	processes	all	the	events	in	almost	real-time	in	the	above	tests.	

	

	
Figure	10.	SDM	load	testing	with	PerfTest.	Used	memory	of	Drools-based	implementation	vs	Siddhi-

based	implementation	(500,500,1000	events/sec)	

In	 Figure	 10,	 we	 can	 see	 the	memory	 consumption	 of	 Drools	 and	 Siddhi	 when	 sending	 500	 events	 per	
second	(twice)	and	1000	events	per	second.	 In	these	event	rates,	both	CEP	engines	have	similar	memory	
consumption.	
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Figure	11.	SDM	load	testing	with	PerfTest.	Used	memory	of	Drools-based	implementation	vs	Siddhi-

based	implementation	(1250	to	3000	events/sec)	

In	Figure	11,	we	can	see	the	memory	consumption	of	Drools	and	Siddhi	when	sending	in	range	from	1250	
to	3000	events	per	second,	 in	consecutive	60	second	periods.	After	1500	events	per	second	Drools	needs	
more	memory	than	Siddhi	(the	peak	of	difference	is	about	500MB).	

In	the	following	two	diagramms	we	present	in	the	left	axis	the	CPU	consumption	and	in	the	right	axis	the	
memory	consumption	of	Drools	during	the	tests	that	we	described	before.	

	
Figure	12.	SDM	load	testing	with	PerfTest.	Drools-based	implementation	CPU	utilization	(blue)	and	used	

memory	(green)	(500,	1000	events/sec)	
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Figure	13.	SDM	load	testing	with	PerfTest.	Drools-based	implementation	CPU	utilization	(blue)	and	used	

memory	(green)	(1250	to	3000	events/sec)	

	

In	the	following	two	diagramms	we	present	in	the	left	axis		the	CPU	consumption	and	in	the	right	axis	the	
memory	consumption	of	Siddhi	during	the	tests	that	we	described	before.	

	

	
Figure	14.	SDM	load	testing	with	PerfTest.	Siddhi-based	implementation	CPU	utilization	(blue)	and	used	

memory	(green)	(500,	1000	events/sec)	
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Figure	15.	SDM	load	testing	with	PerfTest.	Siddhi-based	implementation	CPU	utilization	(blue)	and	used	

memory	(green)	(1250	to	3000	events/sec)	

Figure	 16	 depicts	 the	 queued	messages	 in	 RabbitMQ	 (red	 colour)	 and	 the	message	 rates	 (in	 yellow	 the	
publish	 rate	and	 in	green	 the	deliver	 rate).	We	can	observe	 that	RabbitMQ	was	queuing	many	messages	
above	3000	evens	per	second	rate.	

	
Figure	16.	RabbitMQ	management	console	metrics	during	SDM	load	testing	with	PerfTest	(consecutive	

60s	period	tests	with	increasing	rates	from	500	to	3000	events	per	second)	

	

If	we	test	Drools	and	Siddhi	for	bigger	time	periods,	over	1500	events	per	second	we	can	see	clearly	in	the	
following	diagrams	that	Drools	takes	much	more	time	to	process	the	incoming	events.	These	diagrams	have	
been	 produced	 by	 sending	 1500	 events	 per	 second	 for	 5	 minutes	 (300	 sec)	 to	 Siddhi	 and	 Drools	 with	
PerfTest.	
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Figure	17.	SDM	load	testing	with	PerfTest.	CPU	utilization	of	Drools-based	implementation	vs	Siddhi-

based	implementation	(sending	1500	events/sec	for	5	minutes)	

Figure	 17	 depicts	 the	 CPU	 consumption	 of	 the	 two	 implementations	 of	 SDM	while	 load-testing	 the	with	
1500	events/sec	for	of	a	period	of	300	seconds.	From	the	CPU	consumption	diagrams	we	can	confirm	that	
the	Drools-based	implementation	of	SDM	still	processes	the	data	20	minutes	after	PerfTest	has	completed	
sending	events.	

	
Figure	18.	SDM	load	testing	with	PerfTest.	Used	memory	of	Drools-based	implementation	vs	Siddhi-

based	implementation	(sending	1500	events/sec	for	5	minutes)	

Figure	18	depicts	the	memory	consumption	of	the	two	implementations	of	SDM	while	load-testing	the	with	
1500	events/sec	for	of	a	period	of	300	seconds.	
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Figure	19.	SDM	load	testing	with	PerfTest.	CPU	utilization	vs	used	memory	of	Drools-based	

implementation	(sending	1500	events/sec	for	5	minutes)	

Figure	 19	 depicts	 in	 the	 same	 diagram	 the	 CPU	 utilization	 and	 the	memory	 consumption	 of	 the	 Drools-
based	implementation	of	SDM	while	load-testing	it	with	1500	events/sec	for	of	a	period	of	300	seconds.	

	
Figure	20.	SDM	load	testing	with	PerfTest.	CPU	utilization	vs	used	memory	of	Siddhi-based	

implementation	(sending	1500	events/sec	for	5	minutes)	

Figure	 20	 depicts	 in	 the	 same	 diagram	 the	 CPU	 utilization	 and	 the	memory	 consumption	 of	 the	 Siddhi-
based	implementation	of	SDM	while	load-testing	it	with	1500	events/sec	for	of	a	period	of	300	seconds.	In	
contrast	with	the	Drools-based	implementation	Figure	19	CPU	utilization	falls	to	much	lower	than	1%	after	
PerfTest	has	finished	sending	events.	
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Figure	21.	RabbitMQ	management	console	metrics	during	SDM	load	testing	with	PerfTest	(5min	period)	

The	 diagrams	 in	 Figure	 21	 are	 produced	 by	 the	 RabbitMQ	 management	 console.	 The	 diagram	 named	
“Queued	messages”	 depict	 the	 amount	 of	 queued	messages	 in	 RabbitMQ	during	 the	 load-testing	 of	 the	
system	with	PerfTest	for	5	minutes	(or	300	seconds).	In	the	diagram	named	“Message	rates”	the	green	line	
represents	the	deliver	message	rate	while	the	yellow	line	represents	the	publish	message	rates.	As	we	can	
see	the	publish	message	rate	is	very	close	to	1500	events/sec	(as	we	instructed	PerfTest	to	do).	The	deliver	
message	rate	is	twice	because	we	have	two	subscribers	(the	Drools-based	and	the	Siddhi-based	instances	
of	SDM).	

5.2 Experiment	2	(Proxy	Server)	
In	the	second	experiment	we	use	SDM	services	to	monitor	a	proxy	server	that	receives	over	150	requests	
per	second.	The	network	traffic	in	Squid	is	from	a	real	environment.		

	
Figure	22.	Experiment	2	(Load-testing	SDM	when	monitoring	network	traffic	in	a	production	

environment)	

Squid	runs	in	a	separate	machine	than	SDM	services,	which	include	Logstash,	RabbitMQ	and	two	instances	
of	 SDM,	 on	 Drools-based	 and	 one	 Siddhi-based.	 It	 exports	 metadata	 about	 the	 requests	 (source	 IP,	
destination	 IP,	 request_url,	 reponse_time	 )	 that	 it	 serves	 in	 real	 time	 to	 SDM	 over	 the	 UDP	 protocol.	 A	
Logstash	instance	listens	on	the	corresponding	UDP	port,	converts	the	Squid	format	to	JSON	and	publishes	
each	event	back	to	RabbitMQ.	Two	instances	of	SDM,	one	running	Drools	and	one	running	Siddhi	subscribe	
to	this	topic,	receive	the	events	and	detect	the	following	set	of	complex	event	patterns:	

1) Detect	more	than	100	requests	with	the	same	src_ip	every	10	sec	

2) Detect	more	than	100	requests	with	the	same	dst_ip	every	10	sec	

3) Detect	more	than	20	requests	with	the	same	request_url	every	10	sec	

4) Count	the	number	of	requests		every	10	sec	

5) Calculate	the	average	response_time	(of	all	requests)	during	the	last	10	sec	

In	the	second	experiment	we	detect	more	and	more	complex	event	patterns	then	the	previous	one.	
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The	 following	 diagrams	 (Figure	 23,	 Figure	 24)	 depict	 the	 number	 of	 requests	 per	 second	 that	 the	 Squid	
proxy	processes	during	a	period	of	30	minutes.	

	

	
Figure	23.	Squid	Workload	(requests/sec)	–	30	min	period	

	

	
Figure	24.	Squid	Workload	(requests/sec)	–	last	15	minute	of	30	min	period	

The	 following	diagrams	depict	 the	 resource	consumption	of	Drools-based	and	Siddhi-based	SDM	services	
during	the	same	time	period.		

	
Figure	25.	SDM	evaluation	with	Squid	proxy.	CPU	utilization	comparison	(Drools	vs	Siddhi)	

Figure	 25	 depicts	 a	 comparison	 of	 the	 CPU	 utilization	 of	 Drools	 and	 Siddhi-based	 SDM	while	 processing	
request	metadata	from	a	Squid	proxy	that	receives	up	to	200	events/sec.	The	CPU	utilization	on	both	SDM	
instances	 (Drools	 and	 Siddhi-based)	 is	 lower	 than	 4%.	 Siddhi	 clearly	 has	 lower	 CPU	 utilization	 but	 	 the	
difference	with	Drools	is	under	3%.	
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Figure	26.	SDM	evaluation	with	Squid	proxy.	Memory	usage	comparison	(Drools	vs	Siddhi)	

Figure	 26	 depicts	 a	 comparison	 of	 the	memory	 usage	 of	 Drools	 and	 Siddhi-based	 SDM	while	 processing	
request	metadata	from	a	Squid	proxy	that	receives	up	to	200	events/sec.	The	memory	usage	patterns	are	
similar.		

In	the	following	two	diagrams	(Figure	27,	Figure	28)	we	show	for	each	SDM	implementation	using	the	blue	
line	the	CPU	utilization	pattern	and		the	green	line	the	memory	usage	pattern	during	the	same	experiment	
with	the	Squid	proxy.		

	
Figure	27.	SDM	evaluation	with	Squid	proxy.	CPU	utilization	vs	used	memory	(Drools-based	

implementation)	
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Figure	28.	SDM	evaluation	with	Squid	proxy.	CPU	utilization	vs	used	memory	(Siddhi-based	

implementation)	

5.3 Differences	between	Siddhi	and	Drools	CEP	languages	
In	 this	 paragraph,	 we	 discuss	 some	 differences	 in	 the	 expressivity	 of	 Drools	 and	 Siddhi	 rule	 languages.		
Siddhi	rule	language	is	SQL-like	while	Drools	language	follows	the	paradigm	of	Event-Condition-Action	(ECA)	
rules.		

As	we	can	see	in	the	following	examples,	regarding	the	calculation	of	simple	functions	like	the	average,	the	
minimum	 or	 the	 maximum	 of	 a	 metric	 over	 a	 period	 of	 time	 both	 rule	 languages	 have	 different	 but	
straightforward	expressions.	

	

rule "Average response time" 
   timer ( int: 10s 10s ) 
when  
   $rt: Number() from accumulate( $event: SquidEvent( rt : response_time ) over 
window:time(10s),  average( rt ) ) 
then 
   log("[RESPTM] " + $rt + " average response time"); 
end 

Drools	rule	to	calculate	average	response	time	

	

from squidStream#window.timeBatch(10 sec) 
select str:concat("[RESPTM] " , convert(avg(rtime),'string'), " average response 
time" ) as msg 
insert into msgStream; 

Siddhi	rule	to	calculate	average	response	time	

When	we	want	to	aggregate	over	different	objects	and	group	the	results	over	a	group	key,	according	to	our	
knowledge,	Drools	rule	language	is	not	as	expressive	as	Siddhi	rule	language.	In	the	following	examples	we	
show	 how	we	 can	 detect	 a	 situation	where	more	 than	 20	 requests	 for	 the	 same	URL	 are	 detected	 in	 a	
period	of	 time	of	10	 seconds.	 In	Drools	we	have	 to	produce	an	event	 (RequestAlert)	which	expires	 in	10	
seconds	and	insert	it	in	the	fact	base	in	order	to	prevent	Drools	to	continuously	produce	the	situation	after	
the	first	time	it	was	detected.	

	

declare RequestAlert 
  @role( event ) 
  @timestamp( ts ) 
  @expires ( 10s ) 
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  ts: Date @key 
  url: String @key 
end 
 
rule "request_url alert" 
   timer ( int: 10s 10s ) 
when 
   $e1 : SquidEvent( $url : request_url )   
   not RequestAlert( url == $url ) 
   $c : Number(intValue > 20 ) from accumulate (  
       $e2 : SquidEvent( this != $e1, request_url == $url ) over 
window:time(10s) , count( $e2 ) )  
then 
   insert ( new RequestAlert( new Date(),  $url ) ); 
   log( "[REQURL] " + $c + " requests to the same url in 10s" ); 
end 

Drools	rule	to	alert	when	more	than	N=20	requests	for	the	same	url	are	detected	in	a	period	of	10	
seconds.	

With	Siddhi	we	can	group	by	the	attribute	“rurl”	(that	corresponds	to	the	request	URL)	and	check	every	10	
seconds	(with	#window.timeBatch)	for	each	one	if	the	total	is	over	20	(having	cnt>20).	

	

from squidStream#window.timeBatch(10 sec) 
select  count(rurl) as cnt , rurl  
group by rurl 
having cnt > 20 
insert into rurlStream; 
 
from rurlStream 
select str:concat("[REQURL] " , cnt, "  requests to the same url in 10s" ) as 
msg 
insert into msgStream; 

Siddhi	rule	to	alert	when	more	than	N=20	requests	for	the	same	url	are	detected	in	a	period	of	10	
seconds.	
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6. Conclusions	
	

This	 deliverable	 presented	 the	 first	 version	 of	 the	 Situation	 Detection	 Mechanism.	 SDM	 allows	 the	
detection	of	situations	that	require	some	kind	of	infrastructure	or	application	adaptation.	SDM	does	so	by	
processing	and	analysing	data	streams	generated	by	data-intensive	applications	and	services	deployed	on	
cloud	resources	or	at	computing	 resources	at	 the	extreme	edge	of	 the	network,	which	are	monitored	by	
PrEstoCloud.	

The	fist	version	of	SDM	focused	on	providing	detection	capabilities	for	situations	that	are	few	and	can	be	
modelled	manually.	Hence,	we	followed	a	specification-based	approach.	During	the	course	of	the	project,	
we	will	evaluate	the	specification-based	approach	and,	 if	needed,	we	will	augment	 it	with	 learning-based	
methods	and	techniques	to	cope	with	more	and	more	complex	situations,	which	can	be	manually	specified	
as	well	as	with	imperfect	sensors.		

We	designed	the	SDM	component	so	as	it	is	modular	and	can	be	easily	deployed	as	a	Docker	container	or	a	
set	 of	 Docker	 containers.	Moreover,	we	 designed	 SDM	 to	 be	 independent	 of	 CEP	 libraries	 and	we	 have	
shown	that	it	can	operate	with	both	the	Siddhi	and	Drools	CEP	libraries.	We	also	demonstrated	a	real-world	
scenario	indicative	of	the	usage	of	our	component,	and	its	capabilities.		

Testing	 and	 evaluation	of	 SDM	 revealed	 that	 it	 is	 capable	 to	 detect	 situations	 defined	 as	 complex	 event	
patterns.	Specifically,	we	tested	SDM	in	conjunction	with	both	Drools	and	Siddhi	in	two	scenarios:	first,	we	
stress-tested	 it	 using	 the	 PerfTest	 load-testing	 tool	 of	 RabbitMQ	 and,	 second,	 to	 detect	 situations	 in	
computer	 network	 traffic	 in	 a	 real	 production	 computing	 environment.	 Tests	 indicated	 that	 SDM	 can	be	
used	to	detect	situations	expressed	as	complex	event	patterns.	Moreover,	out	tests	have	shown	that	Siddhi	
can	scale	better	than	Drools.	

Our	next	objective	will	be	the	development	of	the	PrEstoCloud	Adaptation	Recommender	(D5.5),	which	will	
consume	 the	 output	 of	 SDM,	 i.e.,	 the	 situations	 that	 are	 detected	 by	 SDM	 are	 require	 adaptation.	 The	
Adaptation	Recommender	will	be	fed	also	with	the	output	of	other	WP5	components,	namely,	the	Mobile	
Context	 Analyser	 and	 Workload	 Predictor	 and	 will	 generate	 as	 output	 specific	 recommendations	 for	
adaptations	 in	 the	 PrEstoCloud	 infrastructure	 resources.	 	 This	 will	 enable	 us	 afterwards	 to	 evaluate	 the	
complete	 capabilities	 of	 WP5	 components,	 i.e.	 its	 capabilities	 to	 adapt	 and	 reconfigure	 the	 processing	
topology	so	that	its	performance	requirements	can	be	satisfied.	
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8. Appendix	I	–	Example	configuration	files	

8.1 Docker-compose	
	
version: '2.4' 
 
services: 
 
  rabbitmq: 
    build: ./rabbitmq 
    hostname: "rabbitmq-broker" 
    environment: 
      RABBITMQ_ERLANG_COOKIE: "SWQOKODSQALRPCLNMEQG" 
      RABBITMQ_DEFAULT_USER: "rabbitmq" 
      RABBITMQ_DEFAULT_PASS: "rabbitmq" 
      RABBITMQ_DEFAULT_VHOST: "/" 
    ports: 
      - "15672:15672" 
      - "5672:5672" 
    labels: 
      NAME: "rabbitmq1" 
    networks: 
      - esnet 
    healthcheck: 
      test: ["CMD", "curl", "-f", "http://localhost:15672"] 
      interval: 30s 
      timeout: 5s 
      retries: 5 
 
  logstash: 
    image: docker.elastic.co/logstash/logstash-oss:6.2.0 
    volumes: 
      - ./logstash/netdata.pipeline:/usr/share/logstash/pipeline:ro 
      - ./logstash/config/logstash.yml:/usr/share/logstash/config/logstash.yml:ro 
    ports:  
      - 5002:5000 
    networks: 
      - esnet 
    depends_on: 
      rabbitmq: 
        condition: service_healthy 
    healthcheck: 
      test: ["CMD", "curl", "-f", "http://localhost:9600"] 
      interval: 30s 
      timeout: 5s 
      retries: 5 
 
  sdmsrv2: 
    build: ./sdmsrv2 
    image: sdmsrv2:1.0 
    environment: 
      - TZ=Europe/Athens 
      - MAVEN_OPTS=-Xmx1024m -Xms1024m -Dcom.sun.management.jmxremote -
Dcom.sun.management.jmxremote.port=1898 -Dcom.sun.management.jmxremote.rmi.port=1898 -
Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false -
Dcom.sun.management.jmxremote.local.only=false -Djava.rmi.server.hostname=0.0.0.0 -
Dkie.mbeans=enabled 
    volumes:       
      - ./sdmsrv2/resources.netdata:/sdm/src/main/resources:ro #netdata example 
      #- /docker/maven/.m2:/root/.m2:rw #mount maven .m2 repository on a local volume 
    command: mvn install #exec:java  
    ports:  
      - 1898:1898 # HOST port : CONTAINER port 
    networks: 
      - esnet 
    depends_on: 
      logstash: 
        condition: service_healthy 
 
  netdata:  #services running netdata that push events to logstash->rabbitmq->sdmsrv2(siddhi) 
    build: netdatagen/. 
    ports: 
      #- "19999:19999" 



PrEstoCloud	GA	732339	Deliverable	D5.1	
“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	

	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 43	

      - "19999-20100:19999" #needed for multiple instances with scale=n 
    labels: 
      NAME: "netdata" 
    networks: 
      - esnet 
    volumes: 
      - ./netdatagen/netdata.conf:/etc/netdata/netdata.conf:ro 
    depends_on: 
      - rabbitmq  
 
networks: 
  esnet: 

	

8.2 Logstash	pipeline	for	Netdata	
input { 
  graphite { 
    port => 5000 
  } 
} 
 
filter { 
  grok { 
    match => [ "message", "%{DATA:mname} %{NUMBER:mvalue:float} %{POSINT:timestamp}" ] 
  } 
} 
 
output { 
  stdout { 
    codec => rubydebug 
  } 
  rabbitmq { 
    host => "rabbitmq" 
    user => "rabbitmq" 
    password => "rabbitmq" 
    exchange => "LOGSTASH2_TO_SDM" 
    exchange_type => "topic" 
    durable => "false" 
    key => "%{mname}" 
  } 
} 

	

8.3 Siddhi	rule	file	
	
@App:name('BenchmarkExecutionPlan')  
 
define stream outputStream (memory double, cpu double); 
define trigger TenSecTriggerStream at every 10 sec; 
define trigger StartTriggerStream at 'start'; 
define stream msgStream (msg string); 
  
@source( 
 type ='rabbitmq', 
 uri = 'amqp://rabbitmq:rabbitmq@rabbitmq:5672', 
 exchange.name = 'SDM_INPUT', 
 routing.key= 'input.data', 
 @map( 
  type='json'   
 ) 
) 
define stream serverStream (memory double, cpu double); 
 
from StartTriggerStream select 'CEP STARTED' as msg insert into msgStream; 
 
from serverStream#window.timeBatch(10 sec) 
select str:concat("CPU AVG:",convert(avg(cpu),'string'))  as msg 
insert into msgStream; 
 
from serverStream#window.timeBatch(10 sec) 
select str:concat("CPU COUNT:",convert(count(cpu),'string'))  as msg 
insert into msgStream; 
 
from serverStream#window.timeBatch(10 sec) 
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select str:concat("MEMORY AVG:",convert(avg(memory),'string'))  as msg 
insert into msgStream; 
 
from serverStream#window.timeBatch(10 sec) 
select str:concat("MEMORY COUNT:",convert(count(memory),'string'))  as msg 
insert into msgStream; 
 
 

8.4 Netdata	backend	configuration	(netdata.conf)	
 
 
[backend] 
 enabled = yes 
 data source = average 
 type = graphite 
 destination = logstash:5000 
 prefix = netdata 
 hostname = mypc 
 update every = 3 
 buffer on failures = 10 
 timeout ms = 20000 
 send names instead of ids = yes 
 send charts matching = system.cpu* 

 


