
PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 1	

			

	
	 	

	

	
	

	

	

Project	acronym:	 																				PrEstoCloud	

Project	full	name:	 Proactive	Cloud	Resources	Management	at	the	Edge		
for	efficient	Real-Time	Big	Data	Processing	

Grant	agreement	number:	 732339		

	

D5.5	Resources	Adaptation	&	Data-intensive	Application	
Recommenders	–	Iteration	I	

	

Deliverable	Editor:	 	Dimitris	Apostolou	(ICCS)		

Other	contributors:	 Nikos	Papageorgiou,	Andreas	Tsagkaropoulos,	Yiannis	Verginadis,	
Gregoris	Mentzas	(ICCS)	

Deliverable	Reviewers:	 Salman	Taherizadeh	(JSI),	Nenad	Stojanovic	(Nissatech)	

Deliverable	due	date:	 30/06/2018	

Submission	date:	 30/06/2018	

Distribution	level:	 Public	

Version:	 Final	

	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 2	

This	document	is	part	of	a	research	project	funded		
by	the	Horizon	2020	Framework	Programme	of	the	European	

Union		 		

	 	
	 	

Change	Log	
	

Version	 Date	 Amended	by	 Changes	

0.1	 05/04/2018	 Dimitris	Apostolou	(ICCS)	 Table	of	Contents	

0.2	 20/04/2018	 Dimitris	Apostolou,	Nikos	
Papageorgiou,	Andreas	
Tsagkaropoulos,	Gregoris	
Mentzas,	Yiannis	Verginadis	
(ICCS)	

First	draft	version	circulated	to	the	
consortium	

1.0	 27/06/2018	 Dimitris	Apostolou,	Nikos	
Papageorgiou,	Andreas	
Tsagkaropoulos,	Gregoris	
Mentzas,	Yiannis	Verginadis	
(ICCS)	

Pre-final	version	ready	for	internal	review	

Final	 30/06/2018	 Dimitris	Apostolou,	Nikos	
Papageorgiou,	Andreas	
Tsagkaropoulos,	Gregoris	
Mentzas,	Yiannis	Verginadis	
(ICCS)	

Final	version	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 3	

Table	of	Contents	
	

Change	Log	...	2	

Table	of	Contents	...	3	

List	of	Tables	...	4	

List	of	Figures	..	4	

List	of	Abbreviations	...	5	

Executive	Summary	..	6	

1.	 Introduction	...	7	

1.1	 Scope	..	7	

1.2	 Relation	to	PrEstoCloud	Tasks	and	Components	..	7	

1.3	 Document	Structure	...	8	

2.	 Data-Intensive	Application	Fragmentation	&	Deployment	Recommender	...	9	

2.1	 Approach	and	Architecture	..	9	

2.2	 Implementation	..	11	

2.2.1								The	Data	Pre-Processing	stage	...	11	

2.2.2	 The	TOSCA	generation	stage	..	17	

2.2.3	 The	TOSCA	assembler	...	22	

3.	 Resources	Adaptation	Recommender	...	23	

3.1	 Approach	..	23	

3.2	 Architecture	..	24	

3.3	 Implementation	..	26	

3.4	 Adaptation	rules	...	27	

4.	 Conclusions	and	Future	Work	..	30	

5.	 References	...	31	

APPENDIX	I:	Specification	of	the	type-level	TOSCA	file	..	32	

I.1	The	Metadata	Segment	..	32	

I.2	The	Node	Types	segment	..	34	

I.3	The	Policies	segment	..	36	

I.4	The	Node_templates	segment	..	36	

	

	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 4	

List	of	Tables	
Table	1.	The	available	annotations	for	a	code-level	fragment	---	14	

Table	2.	The	policy	file	requirements	--	16	

Table	3.	Example	fragmented	application	--	19	

Table	4.	Description	of	the	TOSCA	segments	present	in	the	type-level	TOSCA	file	-----------------------------	32	

Table	5.	The	TOSCA	metadata	fields	---	33	

Table	6.	The	fields	of	a	TOSCA	processing	node	---	34	

Table	7.	The	fields	of	a	policy	node	---	36	

Table	8.	The	fields	of	a	fragment	node	--	37	

Table	9.	The	fields	of	a	mapping	node	---	37	

	

List	of	Figures	
Figure	1:	Relations	of	DIAFDRecom	and	RARecom	with	PrEstoCloud	components	------------------------------	7	

Figure	2:	DIAFDRecom	during	the	deployment	cycle	of	an	application	in	PrEstoCloud	-------------------------	9	

Figure	3:	The	internal	architecture	of	DIAFDRecom	--	10	

Figure	4:	Elements	of	the	Fragmentation	Policy	model	used	by	the	DIAFDRecom	-----------------------------	12	

Figure	5	The	Tosca	Node	Generation	subcomponents	--	17	

Figure	6:	Resolution	of	dependencies	using	forward	dependency	processing	-----------------------------------	20	

Figure	7:	Resolution	of	dependencies	using	bidirectional	dependency	processing	----------------------------	21	

Figure	8.	The	RARecom	Business	Logic	--	24	

Figure	9.	The	RARecom	Architecture	---	25	

		
	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 5	

List	of	Abbreviations	
The	following	table	presents	the	acronyms	used	in	the	deliverable.	

Abbreviation	 Description	
ACE	 Acquisitional	Context	Engine	

DIAFDRecom	
Data	 Intensive	 Application	 Fragmentation	 &	 Deployment	
Recommender	

AMQP	 Advanced	Message	Queuing	Protocol	
CPU	 Central	Processing	Unit	
CSV	 Comma	Separated	Value	
DSL	 Domain	Specific	Languages	
HDA	 Highly	Distributed	Applications	
JPPF	 Java	Parallel	Processing	Framework	
JSON	 JavaScript	Object	Notation	
MCA	 Mobile	Context	Analyser	
MCC	 Mobile	Cloud	Computing	
MEC	 Mobile	Edge	Computing	
OMG	 Object	Management	Group	
OS	 Operating	System	
RAM	 Random	Access	Memory	
RARecom	 Resources	Adaptation	Recommender	
RPI	 Raspberry	Pi	computer	
TOSCA	 Topology	and	Orchestration	Specification	for	Cloud	Applications	
SDM	 Situation	Detection	Mechanism	
UAV	 Unmanned	Areal	Vehicle	
UML	 Unified	Modelling	Language	
VM	 Virtual	Machine	
XMI	 XML	Metadata	Interchange	
XML	 Extensible	Markup	Language
LTE	 Long-Term	Evolution	
GPS	 Global	Positioning	System	

	

	

	

	

	

	

	

	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 6	

	

Executive	Summary	
	

This	 deliverable	 reports	 on	 the	 work	 performed	 under	 Task	 5.3	 “Dynamic	 adaptation	 of	 resources	
allocation”	 and	 Task	 5.4	 “Data-intensive	 application	 fragmentation	 and	 deployment	 recommender”	with	
respect	to	the	development	of	two	components	included	in	the	PrEstoCloud	architecture:	(i)	Data-Intensive	
Application	 Fragmentation	 &	 Deployment	 Recommender	 (DIAFDRecom)	 and	 (ii)	 Resources	 Adaptation	
Recommender	(RARecom).	Both	these	components	are	central	elements	of	the	Meta	management	layer	of	
the	PrEstoCloud	architecture,	and	provide	the	main	input	to	elements	of	the	Control	 layer,	describing	the	
properties	 of	 the	 Cloud	 Application	 deployment.	 The	 DIAFDRecom	 and	 RARecom	 are	 responsible	 for	
communicating	 the	 preferences	 and	 constraints	 of	 the	 DevOps	 to	 the	 Control	 layer	 and	 directing	 the	
adaptations	 of	 the	 processing	 topology	 –	 and	 therefore	 can	 be	 considered	 to	 be	 elements	 of	 the	
PrEstoCloud	backbone.		

The	 DIAFDRecom	 module	 provides	 the	 capability	 of	 parsing	 code-level	 annotations,	 as	 well	 as	 DevOps	
preferences	 and	 requirements	 (e.g.	 	 cloud	 provider	 requirements)	 expressed	 in	 a	 policy	 file.	 These	
requirements	 are	 then	 grouped	 and	 a	 preliminary	 (“type-level”)	 TOSCA	 file	 is	 produced.	 This	 type-level	
TOSCA	 is	 subsequently	 pushed	 to	 the	 PrEstoCloud	 Repository,	whence	 it	 is	 retrieved	 by	 the	 appropriate	
Control	 Layer	 components	 in	 order	 to	 calculate	 the	 optimal	 configuration	 for	 the	 initial	 application	
deployment.	 The	 RARecom	 exploits	 monitoring	 information	 with	 respect	 to	 the	 health	 status	 of	 the	
deployed	application,	and	triggers	the	adjustment	of	the	deployed	topology	properties,	 in	order	to	better	
satisfy	 the	 requirements	 expressed	 by	 the	 developer	 (in	 the	 annotations)	 and	 the	DevOps	 (in	 the	 policy	
file).	

The	 DIAFDRecom	 and	 RARecom	 provide	 a	 solution	 for	 the	 DevOps	 and	 the	 developer	 to	 express	 their	
requirements	 in	 an	 easily-understandable	 format	 (key-value,	 and	 annotation-based),	 and	 yet	 be	 able	 to	
communicate	 over	 a	modern	 cloud	 standard	 (OASIS	 2017).	 They	 have	 been	 built	 in	 a	 way	 that	 permits	
extensions	and	enhancements	(e.g.	adding	a	new	requirement	or	a	new	TOSCA	file	section	/	element).	 In	
order	to	 facilitate	the	understanding	of	 the	function	of	 these	components,	we	have	 included	appropriate	
architectural	 representations.	 The	 relevant	 figures	 explain	 both	 the	 internal	 architecture	 of	 the	
components,	as	well	as	their	relationships	with	the	rest	PrEstoCloud	components.				 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 7	

1. Introduction	

1.1 Scope	
	

This	deliverable	reports	on	the	baseline	implementation	of	the	Data-Intensive	Application	Fragmentation	&	
Deployment	 Recommender	 and	 the	 Resources	 Adaptation	 Recommender.	 These	 two	 modules	 of	 the	
PrEstoCloud	 meta-management	 layer	 (shown	 in	 Figure	 1)	 provide	 PrEstoCloud	 the	 capabilities	 to	
recommend	 application	 fragmentation,	 deployment	 and	 adaptation	 actions.	 Recommendations	 are	
propagated	to	the	Control	layer,	which	is	responsible	for	implementing	them.	The	main	goal	of	these	two	
modules	is	to	ensure	that	the	Cloud	application	will	be	reliably	executed,	under	non-trivial	workloads,	while	
respecting	 the	 expressed	 requirements.	 The	 two	 modules	 rely	 on	 the	 input	 of	 the	 developer	 and	 the	
DevOps,	who	provide	the	guidelines	for	the	initial	deployment	and	subsequent	adaptation	actions.		

The	 scope	 of	 this	 deliverable	 includes	 the	 architectural	 design	 and	 implementation	 of	 the	 two	
recommenders.	 Specifically,	 we	 present	 the	 internal	 structure	 of	 both	 the	 DIAFDRecom	 and	 RARecom	
modules,	outlining	the	main	functionalities	of	each	one	and	the	interactions	between	the	constituent	sub-
components	 of	 each	module.	 	Moreover,	 the	 deliverable	 includes	 the	 specification	 of	 the	 input	 and	 the	
output	of	the	two	modules.		

1.2 Relation	to	PrEstoCloud	Tasks	and	Components	
	

The	Resource	Adaptation	Recommender	and	the	Data-Intensive	Application	Fragmentation	&	Deployment	
Recommenders	 follow	 the	 definitions	 set	 as	 part	 of	 D2.1	 (Scientific	 and	 Technological	 State-of-the-Art	
analysis),	and	adhere	to	the	principal	 layout	of	the	PrEstoCloud	platform,	as	 it	 is	expressed	 in	Deliverable	
6.1	(Architecture	of	the	PrEstoCloud	platform)	and	initially	described	in	D2.3	(Conceptual	Architecture).		

Figure	1	shows	the	logical	relations	between	the	two	recommenders	and	other	components	of	the	meta-
management	layer	as	well	as	the	control	layer	and	the	user	roles.	Technical	links	reflect	the	actual	flow	of	
information	 (e.g	 through	network	 communication)	 during	 the	operation	of	 the	Meta	management	 layer,	
while	logical	links	reflect	the	conceptual	flow	of	information	among	entities.	

	
Figure	1:	Relations	of	DIAFDRecom	and	RARecom	with	PrEstoCloud	components	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 8	

For	 the	 DIAFDRecom	 module,	 the	 input	 is	 the	 code-level	 annotations	 and	 a	 policy	 file	 created	 by	 the	
Application	 Developer	 and	 the	 DevOps,	 respectively.	 The	 output	 of	 the	 DIAFDRecom	 module	 is	 a	
description	 of	 the	 appropriate	 topology	 (according	 to	 the	 expressed	 preferences	 and	 constraints)	 of	 the	
application	fragments,	expressed	in	the	TOSCA	language.	The	RARecom	module	receives	input	from	every	
component	of	the	Meta-management	layer	–	the	Mobile	Context	Analyzer	(developed	as	part	of	D3.5),	the	
Situation	Detection	Mechanism	(developed	as	part	of	D5.1)	and	the	Workload	Predictor	(D5.3).	Moreover,	
it	 receives	as	 input	 from	the	Control	 Layer	 the	current	deployment	of	 the	application.	The	output	of	 the	
RARecom	module	is	a	description	of	suggested	changes	in	the	current	topology	of	the	application,	including	
information		about	edge	devices	that	cannot	be	used	(according	to	their	context)	expressed	in	the	TOSCA	
language.	The	output	of	both	modules	will	be	parsable	by	the	components	of	the	Control	layer.	

1.3 Document	Structure		
	

The	deliverable	is	structured	as	follows:		Sections	2	and	3	present	the	approach,	design	and	implementation	
of	DIAFDRecom	and	RARrecom,	 respectively.	 In	Section	4	we	 formulate	our	conclusions	on	 the	approach	
and	 the	 development	 of	 the	 two	 modules.Note	 that	 related	 works	 have	 been	 explored	 as	 part	 of	
deliverable	D2.1.	Moreover,	we	include	in	an	appendix,	the	specification	of	the	type-level	TOSCA	file	which	
is	the	output	of	the	recommenders.	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 9	

2. Data-Intensive	Application	Fragmentation	&	Deployment	
Recommender	

2.1 Approach	and	Architecture	
In	 PrEstoCloud,	 we	 implement	 a	 series	 of	 components	 which	 allow	 a	 data-intensive	 cloud	 application	
consisting	 of	 independent	 processing	 fragments	 to	 take	 advantage	 of	multiple	 processing	 entities,	 from	
small-factor	edge	devices	such	as	Raspberry	Pi’s	or	UAV’s,	to	large-flavoured	resources	in	public	and	private	
clouds.	In	order	to	accomplish	this,	we	rely	on	the	input	of	the	developer	and	of	the	DevOps	in	the	form	of	
code	annotations	and	of	a	policy	file.		

	DIAFDRecom	 aims	 to	 undertake	 the	 responsibility	 of	 describing	 the	 appropriate	 fragmentation	 of	
applications	into	smaller	parts	in	order	to	be	efficiently	deployed	over	cloud	/	edge	resources.	Moreover,	it	
aims	 to	 associate	 applications	 and	 application	 fragments	 with	 placement	 constraints	 and	 optimization	
preferences.	The	input	of	this	mechanism	should	include	the	available	processing	resources	as	well	as	the	
qualitative,	quantitative	preferences	of	the	DevOp	and/or	the	Application	developer.	Based	on	this	 input,	
the	recommended	fragmentation	will	be	serialized	in	a	TOSCA	specification	that	will	refer	to	type-level	VMs	
or	 Edge	 resources	 (as	 hosting	 nodes),	 while	 the	 specific	 number,	 location	 and	 type	 of	 the	 VM	 or	 edge	
device	 processing	 instances	 will	 be	 decided	 based	 on	 the	 advanced	 optimization	 mechanism	 of	 the	
PrEstoCloud	Control	Layer.	

	

	
Figure	2:	DIAFDRecom	during	the	deployment	cycle	of	an	application	in	PrEstoCloud	

In	 this	 section,	we	 describe	 the	 current	 design	 of	 DIAFDRecom,	which	 can	 handle	 code	 only	 in	 the	 Java	
programming	 language,	 which	 is	 widely	 popular	 and	 suitable	 for	 multiplatform	 execution.	 The	 input	
provided	can	enhance	 the	behaviour	of	a	 service	as	processing	 requirements	can	be	specified,	as	well	as	
placement	 constraints.	 Additionally,	 the	 developer	 can	 fine-tune	 the	 processing	 environment	 of	 code-
fragments	through	the	use	of	optional	java	annotations.	When	no	annotation	can	be	found	for	a	fragment,	
it	is	expected	to	be	processed	locally	(legacy	mode).	The	annotations	of	the	developer	are	completed	and	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 10	

can	be	further	enhanced,	with	the	requirements	expressed	by	the	DevOps	in	the	Policy	file	(e.g	specifying	
the	 Cloud	 provider	 to	 be	 used).	 DIAFDRecom	 processes	 the	 requirements	 included	 in	 these	 files,	 and	
produces	 output	 in	 TOSCA	 format,	 understandable	 by	 the	 components	 of	 the	 Control	 layer,	 which	 can	
process	it	and	instantiate	the	processing	topology	in	an	automatic	way.	Figure	2,	presents	the	DIAFDRecom	
in	the	lifecycle	of	an	application	deployed	using	the	PrEstoCloud	platform.	

The	 DevOps	 and	 the	 Developer	 send	 to	 the	 module	 the	 requirements	 of	 the	 application	 which	 are	
processed	and	transcribed	to	a	type-level	TOSCA	file.	This	file	is	then	retrieved	by	elements	of	the	Control	
Layer	which	optimize	the	deployment,	ensuring	the	requirements	of	the	application	are	met.	The	last	step	
of	the	initial	placement	(or	the	reconfiguration)	of	an	application	is	the	deployment	of	the	application.	

The	internal	architecture	of	the	processing	carried	out	inside	the	DIAFDRecom	is	described	in	the	workflow	
depicted	in	Figure	3:	

	

	
Figure	3:	The	internal	architecture	of	DIAFDRecom	

	

The	necessary	 input	for	the	application	consists	of	the	Fragmentation	policy	file	which	 is	compiled	by	the	
DevOps	and	contains	the	various	requirements	of	the	application	from	the	platform,	and	the	source-code	
annotations	of	the	developer.		

Once	all	input	has	been	properly	entered,	the	DIAFDRecom	module	can	be	triggered,	starting	the	execution	
of	 the	 Tosca	Node	Generator	 class,	which	 in	 turn	 invokes	 the	 Policy	 File	 interpreter	 and	 the	Annotation	
Extraction	 modules.	 The	 Annotation	 Extraction	 module	 will	 extract	 the	 annotation	 from	 each	 method	
(expressing	the	hosting	requirements),	as	well	as	any	dependency	requirements	or	anti-affinity	constraints	
(collocation	 requirements).	 The	 Policy	 file	 interpreter	 on	 the	 other	 hand	 extracts	 Business	 Goals,	
Deployment	 Requirements,	 Budget	 Requirements,	 Scalability	 Requirements,	 Provider	 Requirements,	 and	
Mapping	Requirements.		

Following	the	completion	of	data	pre-processing,	the	constituent	elements	of	the	TOSCA	file	–	the	TOSCA	
nodes	 –	 can	 be	 constructed.	 This	 procedure	 is	 performed	 in	 the	 TOSCA	 node	 generation	 stage,	 which	
defines	new	TOSCA	nodes	and	maps	the	requirements	gathered	to	the	appropriate	TOSCA	constructs.	More	
specifically,	 the	 mapping	 and	 deployment	 requirements	 expressed	 by	 the	 DevOps	 and	 the	 hosting	 and	
collocation	 requirements	expressed	by	 the	developer	are	used	 to	 create	new	processing	node	 types	and	
collocation	 (or	anti-affinity)	policies.	The	business	goals,	budget	 requirements	and	provider	 requirements	
(are	added	as	metadata,	to	be	considered	in	the	optimization	carried	out	in	the	Control	Layer.	Afterwards,	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 11	

the	 definitions	 of	 new	 property,	 relationship	 and	 capability	 nodes	 containing	 core	 functionality	 for	
PrEstoCloud	are	appended	to	the	TOSCA	file.	

Finally,	new	TOSCA	nodes	are	created	for	each	annotated	application	fragment	which	are	used	to	describe	
the	mapping	of	application	fragments	to	processing	nodes,	and	the	TOSCA	file	is	finalized.	The	output	is	a	
“type-level”	TOSCA	file,	because	it	only	contains	information	concerning	the	types	of	the	processing	nodes,	
and	 the	 relationships	 among	 them,	 rather	 than	 naming	 specific	 VM	 flavours,	 IP	 ranges	 or	 directly	
mentioning	 the	 cloud	 provider	 to	 be	 used.	 These	 latter	 actions	 are	 within	 the	 scope	 of	 the	 Application	
Placement	&	Scheduling	Controller	PrEstoCloud	component	which	needs	to	solve	a	constraint	programming	
problem	in	order	to	calculate	an	optimal	 instantiation	of	the	topology	used	for	hosting	the	data-intensive	
application.	

2.2 Implementation	
This	 section	details	 the	 implemented	system.	We	have	built	 a	 component	developed	using	 Java	8,	which	
introspects	the	application	code,	the	java	classes	of	an	application	(for	example	placed	inside	a	package	in	
the	project	directory),	retrieves	annotations	and	creates	a	type-level	TOSCA	file.	The	component	includes	a	
first,	data	pre-processing	stage	which	lays	the	ground	for	the	second,	TOSCA	generation	stage,	as	described	
in	the	previous	subsection.		

The	 implementation	 of	 DIAFDRecom	 is	 available	 online	 at:	 https://gitlab.com/prestocloud-
project/application-fragmentation-deployment-recommender	

2.2.1								The	Data	Pre-Processing	stage	
In	the	PrEstoCloud	semantic	model	definition,	created	as	part	of	D2.5	(PrEstoCloud	Semantic	Model),	 the	
application	requirements	which	can	(or	should	be)	defined	by	the	DevOps	or	the	developer	were	specified.	
In	 addition	 to	 these,	we	 now	define	 two	 new	 requirement	 types:	 Firstly,	mapping	 requirements	 -	which	
describemappings	between	the	linguistic	valuesused	to	characterize	the	load	on	each	processing	attribute	
and	 the	corresponding	processing	 capacity	alloted	 to	 it	 (e.g	CPULoad.LOW	mapped	 to	2	CPU	cores)-	and	
secondly,	Deployment	Requirements	which	enable	the	DevOps	to	define	global	topology	constraints.	

In	Figure	4,	the	PrEstoCloud	Fragmentation	Policy	Model	developed	as	part	of	D2.5(PrEstoCloud	Semantic	
Model)	is	depicted.	The	areas	which	are	greyed	out	represent	model	entities	which	are	not	currently	used	
for	 the	 fragmentation	 of	 the	 application	 (but	 they	 will	 be	 supported	 in	 the	 second	 release	 of	 the	
component).	

	

	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 12	

	
Figure	4:	Elements	of	the	Fragmentation	Policy	model	used	by	the	DIAFDRecom	

	

The	requirements	mentioned	above	are	conveyed	through	the	two	input	sources	of	the	DIAFDRecom:	The	
annotated	source	code,	and	the	policy	file.	The	Collocation	and	the	Hosting	Requirements	are	expressed	in	
the	annotations,	while	all	other	requirements	are	placed	in	the	PrEstoCloud	application	policy	file.		It	is	the	
duty	of	the	Data	Pre-Processing	segment	of	the	DIAFDRecom	to	parse	this	information	and	convert	it	into	a	
format	which	can	be	used	for	further	processing.	

2.2.1.1 Annotations	Extraction	and	processing	
The	DIAFDRecom	makes	extensive	use	of	annotations,	input	by	the	developer	inside	the	processing	source	
code.	 The	 annotations	 specify	 the	 hosting	 requirements	 and	 the	 collocation	 requirements	 of	 the	
application,	using	 linguistic	variables	and	processing	 fragment	names	respectively.	The	entities	which	can	
be	annotated	are	Java	methods	and	Java	classes.	

The	definition	of	the	annotation	class	is	the	following:	

package eu.prestocloud.annotations;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(value = RetentionPolicy.RUNTIME)
public @interface PrestoFragmentation {
 enum MemoryLoad {
 VERY_LOW, LOW, MEDIUM, HIGH, VERY_HIGH
 }

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 13	

 enum CPULoad {
 VERY_LOW,LOW, MEDIUM, HIGH, VERY_HIGH
 }

 enum StorageLoad {
 VERY_LOW,LOW, MEDIUM, HIGH,VERY_HIGH
 }

 String policyFile();

 String overloading_tag() default "";

 boolean onloadable() default false;

 int max_instances() default 1;

 MemoryLoad memoryLoad();

 CPULoad cpuLoad();

 StorageLoad storageLoad();

 String[] dependencyOn() default {};
 String[] antiAffinityTo() default {};
}

Listing	1.	Annotation	Class	definition	

	Annotating	 a	 Java	 method	 signifies	 that	 the	 processing	 fragment	 is	 an	 independent,	 explicitly	 parallel	
service.	 Furthermore,	 it	 also	 denotes	 that	 it	 is	 not	 affected	 by	 race	 conditions	 (occuring	 when	 parallel	
processing	threads	try	to	simultaneously	modify	shared	data)	,	and	does	not	require	any	additional	explicit	
synchronization.	 Furthermore,	 annotating	 a	 Java	 class	 signifies	 that	 all	 of	 its	 methods	 are	 independent,	
parallel	 services	 in	 the	 sense	described	above.	Additionally,	when	a	method	of	 an	annotated	 class	 is	not	
annotated,	it	inherits	the	class	annotation.		

A	complete	example	of	an	annotation	is	the	following:	

@PrestoFragmentation(
policyFile = "policy_file_name",
onloadable = true,
memoryLoad = MemoryLoad.HIGH,
overloading_tag = “1”,
cpuLoad = CPULoad.HIGH,
storageLoad = StorageLoad.LOW,
max_instances = 3
dependencyOn =
{"eu.prestocloud.application_classes.AudioAnalytics.fragmentA","eu.prestocloud.ap
plication_classes.AudioAnalytics.fragmentB"}
antiAffinityTo = {"eu.prestocloud.application_classes.AudioAnalytics.fragmentC"}
)	

Listing	2.	A	sample	annotation	

The	hosting	 requirements	are	determined	 from	 the	max_instances	 annotation,	as	well	 as	 the	processing	
load	of	the	particular	code	fragment	which	is	described	in	terms	of	CPU,	storage	and	memory	usage	and	is	
expressed	 using	 five	 linguistic	 variables:	VERY_LOW,	LOW,	MEDIUM,	HIGH,	VERY_HIGH.	 These	
variables	 are	 defined	 in	 a	 suitable	 enumeration	 type	 for	 each	 resource,	 and	 are	 used	 by	 the	 cpuLoad,	
memoryLoad	 and	 storageLoad	 annotations.	 These	 variables	 can	 be	 set	 by	 the	 developer	 based	 on	 the	
estimated	 workload	 requirements	 of	 the	 code	 that	 he	 has	 produced.	 The	 collocation	 requirements	 are	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 14	

added	using	the	dependencyOn	annotation.	The	available	annotations,	and	possible	values	are	presented	
below.	In	the	example	given	above,	the	hosting	requirements	dictate	that	a	high	number	of	CPU	cores	and	
memory	GB’s	should	be	allotted	to	the	node	which	will	process	the	particular	fragment,	while	the	storage	
requirements	are	modest.	The	fragment	can	scale	out	to	3	 instances	(at	most)	although	 it	should	respect	
the	constraints	of	collocation	and	anti-collocation	for	fragmentA,	fragmentB	and	fragmentC	respectively.		

The	information	contained	in	each	annotation,	as	per	the	definition	provided	above	is	shown	in	Table	1:	

Table	1.	The	available	annotations	for	a	code-level	fragment	

Annotation	Name	 Description	 Possible	values	 Notes	

Policyfile	

	

The	 name	 of	 the	 policy	 file	
which	will	be	used	

“basic_policy_file.policyfile”	 Mandatory	

overloading_tag	 A	tag	which	can	be	used	to	
distinguish	between	
different	instances	of	
overloaded	java	methods	
and	constructors	

[0,Integer.MAX_VALUE]	 Optional,	however	in	
case	of	overloaded	
methods	/	class	
constructors	there	
will	be	no	
opportunity	to	
distinguish	between	
different	instances	

Onloadable	 A	boolean	value	which	
determines	if	the	
application	fragment	can	be	
placed	for	execution	on	the	
edge	

{	true,false	}	 Optional,	assumed	to	
be	false	if	missing	

memoryLoad	 An	 indication	 for	 the	
memory	 load	 of	 the	
application	fragment	

	{	 MemoryLoad.VERY_LOW,	
MemoryLoad.LOW,	
MemoryLoad.MEDIUM,	
MemoryLoad.HIGH,	
MemoryLoad.VERY_HIGH	}	

Mandatory	

cpuLoad	 An	 indication	 for	 the	 CPU	
load	 of	 the	 application	
fragment	

{	 CPULoad.VERY_LOW,	
CPULoad.LOW,	
CPULoad.MEDIUM,	
CPULoad.HIGH,	
CPULoad.VERY_HIGH	}	

Mandatory	

storageLoad	 An	indication	for	the	storage	
load	 of	 the	 application	
fragment	

{	 StorageLoad.VERY_LOW,	
StorageLoad.LOW,	
StorageLoad.MEDIUM,	
StorageLoad.HIGH,Storage.V
ERY_HIGH	}	

Mandatory	

max_instances	 The	 maximum	 number	 of	
processing	 fragment	
instances	 which	 can	 be	
concurrently	used		

[1,Integer.MAX_VALUE]	 Optional,	assumed	to	
be	
Integer.MAX_VALUE	
if	missing.	

dependencyOn	 A	 list	 of	 method-level	
fragments	 which	 should	 be	
collocated	 with	 the	
fragment	 which	 is	 currently	
annotated	

{	
"eu.prestocloud.tosca_gene
rator.AudioAnalytics.detectS
hout",	
"eu.prestocloud.tosca_gene
rator.AudioAnalytics.runAlg
orithm"	}	

Optional,	assumed	to	
be	 an	 empty	 list	 if	
field	is	not	present		

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 15	

antiAffinityTo	 A	 list	 of	 method-level	
fragments	which	 should	not	
be	 collocated	 with	 the	
fragment	 which	 is	 currently	
annotated	

"eu.prestocloud.tosca_gene
rator.AudioAnalytics.detectS
ilence",	
"eu.prestocloud.tosca_gene
rator.AudioAnalytics.testMe
thod2"	

Optional,	assumed	to	
be	 an	 empty	 list	 if	
field	is	not	present	

	

Classes	can	also	be	annotated	with	almost	all	available	annotations	(exceptions	are	the		dependencyOn	and	
overteloading_tag	annotations)	to	denote	the	annotation	which	should	be	applied	to	each	of	 its	methods	
which	 have	 not	 been	 annotated,	 implying	 that	 all	 methods	 in	 the	 class	 satisfy	 the	 constraints	 outlined	
above.	In	case	a	method	is	annotated	inside	a	class,	the	class	annotation	is	overriden	by	the	annotation	of	
the	method.		

2.2.1.2 The	policy	file	
The	policy	file	is	placed	in	the	“policyfiles”	folder	inside	the	DIAFDRecom	project.	

The	policy	file	follows	a	simple	JSON-like	key-value	approach	to	define	application	requirements.	A	sample	
policy	file	is	provided	below:	

BusinessGoal:	
				MetricToMinimize:	Cost	
BudgetRequirement:	
				CostThreshold:	1000	
				TimePeriod:	720	
DeploymentRequirement:	
				MaxInstances:	100	
				MaxFragmentInstances:	10	
				MaxMasterNodeInstances:	2	
ScalabilityRequirement:	
				ScalabilityRequirement1:	https://example.com/scalabilityAction	
				ScalabilityRequirement2:	https://example.com/scalabilityAction2	
MappingRequirement:	
				CPU:	
								VERY_HIGH:	32	
								HIGH:	16	
								MEDIUM:	8	
								LOW:	4	
								VERY_LOW:	2	
				RAM:	
								VERY_HIGH:	32	
								HIGH:	16	
								MEDIUM:	8	
								LOW:	4	
								VERY_LOW:	2	
				DISK:	
								VERY_HIGH:	4000	
								HIGH:	2000	
								MEDIUM:	500	
								LOW:	100	
								VERY_LOW:	40	
ProviderRequirement:	
				ProviderName:	Amazon	
				Required:	false	
				Excluded:	true	

Listing	3.	A	sample	policy	file	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 16	

	

The	mapping	requirements	introduced	in	the	policy	file,	bridge	the	gap	between	the	definition	of	linguistic	
variables	in	the	annotations,	and	the	actual	processing	characteristics	expected	for	a	deployment.	Each	of	
the	 five	 linguistic	 variables	 is	mapped	with	 the	 help	 of	 the	MappingRequirements	 to	 a	 concrete	 integer	
value.	 	These	integers	designate	the	number	of	cores	which	should	be	used	(in	CPUload	annotations)	and	
the	 gigabytes	 of	 free	 space	 required	 to	 process	 the	 fragment	 (both	 in	 memoryload	 and	 storageload	
annotations).	

Additionally,	 the	Deployment	Requirements	are	 refined	 to	allow	 the	DevOps	 to	 control	 the	behaviour	of	
the	application	in	a	more	fine-grained	way.	The	rest	of	the	requirements	follow	the	semantics	described	as	
part	 of	 the	 PrEstoCloud	 Semantic	 Model	 in	 D2.5	 (PrEstoCloud	 Semantic	 Model).	 While	 most	 of	 the	
requirements	 are	 not	 implementation-bound,	 one	 of	 the	 deployment	 requirements	
(MaxMasterNodeInstances)	 is	 tied	 to	 the	 implementation	 decision	 of	 using	 JPPF.	 The	 particular	
requirement	 creates	 a	 constraint	 on	 the	maximum	 number	 of	 JPPF	master	 nodes	which	 coordinate	 the	
processing	carried	out	in	JPPF	agent	nodes.			

	A	description	of	the	elements	of	a	policy	file	follows	in	Table	2.	The	elements	of	a	policy	file	do	not	need	to	
appear	in	a	particular	order.	

	

Table	2.	The	policy	file	requirements	

Requirement	Name	 Description	 Possible	attributes	 Notes	

BusinessGoal	

	

A	 Business	 Goal	 which	
the	 application	 should	
try	to	attain	

MetricToMinimize	 or	
MetricToMaximize	or	a	(Metric,	
Operator,	 Threshold)	 tuple,	
which	are	all		String	variables.	

Mandatory,	 multiple	
BusinessGoals	permitted	

BudgetRequirement	 The	 Budget	
requirement	 of	 the	
application	

CostThreshold	 and	 TimePeriod,	
specifying	 the	number	of	Euros	
available	 for	 the	 use	 of	 public	
clouds,	 and	 the	 number	 of	
hours	 for	 which	 this	 amount	
should	last.	

Optional,	 only	 one	
BudgetRequirement	
permitted	

MappingRequirement	 The	mappings	between	
the	 linguistic	
processing	 variables	
and	 the	 actual	
resources	required	

For	 each	 of	 the	 attributes	
(CPU,RAM,Disk),	 the	 desired		
mappings	 between	 the	 five	
linguistic	 variables	 (VERY_LOW,	
LOW,	 MEDIUM,	 HIGH,	 VERY	
HIGH)	 and	 	 their	 concrete	
integer	values.	

Mandatory	 but	 also	 only	
one	MappingRequirement	
is	permitted	

ProviderRequirement	 A	 Provider	
requirement	 stating	
the	providers	that	can	/	
should	not	be	used	 for	
the	 deployment	 of	 the	
application	

Tuples	 in	 the	 format	 of	
(ProviderName,Required),	 or	
(ProviderName,Excluded),	 	 or	
(ProviderName,Required,Exclud
ed)	 .	 The	 ProviderName	 is	 a	
String,	 while	 the	 Required	 and	
Excluded	 parameters	 are	
boolean	variables.	

Optional,	 multiple	
ProviderRequirements	are	
permitted	

ScalabilityRequirements	 A	 List	 of	 scalability	
requirements	 stating	
the	 name	 of	 the	
requirement	 and	 a	 uri	
of	the	respective	rule	

Tuples	 in	 the	 format	 of	
(ScalabilityPolicyName:	
ScalabilityPolicyUri).	

Optional,	 only	 one	
ScalabilityRequirement	 is	
permitted	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 17	

DeploymentRequirement	 A	 Deployment	
requirement	 stating	
scaling	 parameters	
which	should	guide	the	
deployment	 and	
reconfiguration	 of	 the	
application	

MaxInstances,	 or	
MaxFragmentInstances,	 or	
MaxMasterNodeInstances.	 All	
of	 these	 fields	 accept	 integer	
values	 and	 denote	 the	
maximum	 number	 of	
processing	 instances	 globally,	
the	 maximum	 instances	 which	
can	 be	 started	 per	 fragment	
(overrides	 the	 value	 in	 the	
annotation	 if	 less),	 and	 the	
maximum	 instances	 of	 JPPF	
Master	nodes	in	the	topology	

Optional,	 only	 one	
DeploymentRequirement	
permitted	

	

2.2.2 The	TOSCA	generation	stage	
A	 detailed	 description	 of	 the	 function	 of	 each	 component	 in	 the	 TOSCA	 node	 generation	 of	 the	
DIAFDRecom	follows.	 	

	
Figure	5	The	Tosca	Node	Generation	subcomponents	

	

2.2.2.1 Processing	Node	Types	Creator	
The	processing	node	types	creator	component	creates	a	TOSCA	node	for	each		application	fragment.	These	
nodes	contain	the	hosting	requirements	which	should	be	met	for	an	application	fragment	to	be	able	to	be	
executed.	Initially,	for	each	annotation	describing	the	resource	workload	of	a	fragment	(the	CPU	load	or	the	
memory	 load	or	 the	 storage	 load),	 	 linguistic	 variables	 are	mapped	 to	 a	 range	of	 integers	 (reflecting	 the	
number	of	cores	and	GB’s),	using	the	mapping	requirement	contained	in	the	policy	file.	For	example,	if	the	
mapping	 requirement	 indicates	 that	 HIGH	 CPU	 usage	 requires	 16	 processing	 cores	 and	 that	 VERY_HIGH	
CPU	usage	(the	linguistic	value	after	HIGH)	requires	32	processing	cores,	the	resulting	range	for	a	fragment	
annotated	 with	 the	 CPULoad.HIGH	 annotation	 will	 be	 [16,	 32]	 cores.	 Here,	 [16,	 32]	 means	 that	 the	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 18	

number	 of	 cores	 can	 be	 from	 16	 to	 32,	 inclusive.	 Providing	 a	 range	 instead	 of	 a	 single	 value	 allows	 for	
flexibility	 and	 optimization	 of	 the	 deployment	 in	 the	 Control	 Layer.	 In	 general,	 we	 	 consider	 that	 if	 two	
linguistic	variables	z1	and	z2	of	successively	 increasing	magnitude	(for	example	VERY_LOW	and	LOW)	are	
mapped	to	integer	values	x	and	y	respectively,		and	that	a	fragment	has	been	annotated	with	a	processing	
load	of	z1	for	a	resource	type,	the	respective	integer	range	will	be	[x	,	y].		

The	 processing	 characteristics	 of	 the	 host	 node	 are	 then	 complemented	 by	 more	 generic	 properties	
pertaining	 to	 the	 OS	 (Operating	 System)	 and	 the	 architecture	 of	 the	 processing	 device.	 Then	 the	
requirements	of	the	host	node	in	terms	its	location	(cloud	or	edge)	are	set	to	cloud	and	edge	or	cloud	only,	
according	to	the	onloadable	annotation	of	the	fragment.	Finally,	in	the	case	that	the	produced	TOSCA	file	is	
a	 reconfiguration	of	 the	 topology,	 a	 list	 of	 excluded	edge	devices	 can	be	 attached	 to	deny	execution	on	
devices	which	have	low	battery,	do	not	have	a	quality	data	connection	etc.	

2.2.2.2 TOSCA	Definitions	Creator	
This	 component	 consists	of	 specific	 classes	which	model	 the	TOSCA	 structure	of	 a	 JPPF	 fragment,	 a	 JPPF	
Master	 and	 a	 JPPF	 Agent	 node.	 The	 JPPF	 Agent	 TOSCA	 representation	 includes	 the	 fundamental	
requirement	 of	 a	 JPPF	 Master	 to	 which	 it	 can	 connect,	 while	 the	 JPPF	 Master	 TOSCA	 representation	
specifies	the	capability	of	being	connected	to.	The	JPPF	fragment	representation	includes	the	requirement	
of	being	processed	by	a	JPPF	Agent	node.	

2.2.2.3 TOSCA	Relationships	Creator	&	TOSCA	Capabilities	Creator	
These	two	components	consist	of	utility	methods	which	can	be	used	to	express	a	new	Relationship	 (i.e	a	
dependency	between	TOSCA	nodes)	or	a	Capability	(a	specific	trait	of	a	node,	e.g	to	execute	a	processing	
fragment)	 in	 the	 TOSCA	 format.	 They	 are	 used	 to	 create	 all	 capabilities	 and	 relationships	which	 are	 not	
covered	 by	 standard	 TOSCA,	 yet	 are	 required	 by	 PrEstoCloud.	 Currently,	 there	 are	 two	 new	 capabilities	
(prestocloud.capabilities.jppf.endpoint	 and	 prestocloud.capabilities.jppf.fragmentExecution)	 and	 two	 new	
relationships	 (prestocloud.relationships.jppf.ConnectsTo	 and	 prestocloud.relationships.ExecutedBy)	
defined	once	and	used	throughout	 the	 type-level	TOSCA	document.	The	two	capabilities	are	used	by	 the	
TOSCA	Definitions	Creator,	while	the	relationships	are	used	both	by	the	TOSCA	Definitions	Creator	and	the	
Processing	Node	Types	Creator.	

2.2.2.4 Dependency	Resolution	Module	
The	 Dependency	 Processing	 module	 is	 a	 separate	 class	 inside	 the	 DIAFDRecom,	 which	 can	 resolve	
dependencies	amongst	fragments.	For	the	purpose	of	modelling	the	dependency	problem	we	consider	that	
the	 cloud	 application	 can	 be	 represented	 by	 a	 graph	G(V,E),	where	 the	 set	 of	 vertices	 V	 represents	 the	
application	 fragments,	 and	 the	 set	 of	 edges	 E	 represents	 the	 relationship	 amongst	 the	 fragments	
(dependency	or	anti-affinity	constraint).	

a) Forward	dependency	processing	

The	 Forward	 dependency	 processing	 is	 the	 simpler	 of	 the	 two	 algorithms	 which	 can	 be	 used	 to	 infer	
dependencies	 for	 a	 processing	 fragment	 (the	 other	 one	 being	 the	 Bidirectional	 dependency	 processing	
algorithm	described	below).	Firstly,	the	annotation	which	describes	other	fragments	on	which	the	fragment	
is	dependent	on	is	extracted.	Then,	a	new	entry	is	created	in	a	Java	Map	data	structure,	keyed	by	the	name	
of	the	fragment	and	having	a	set	of	dependent	fragments	as	its	value.	

Recursively,	each	of	the	fragments	f	 in	the	fragment	dependency	set	of	a	fragment	F	 is	evaluated	for	any	
dependencies	 it	 may	 have	 itself.	 If	 any	 dependencies	 are	 found,	 these	 are	 marked	 and	 added	 to	 the	
dependency	set	of	F	while	F	is	marked	as	“explored”.	Once	this	BFS	(Breadth-First-Search)	–	like	traversal	of	
graph	G	is	finished,	every	fragment	in	the	Map	is	associated	to	a	set	of	dependencies	possibly	expanded	in	
comparison	to	the	original.	The	result	of	this	process	is	that	each	fragment	possesses	its	dependency	group,	
and	some	fragments	have	been	marked	as	dependencies	of	other	fragments.	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 19	

In	 the	 final	 stage,	 the	 dependency	 group	of	 every	 fragment	 not	marked	 to	 be	 a	 dependency	 of	 another	
fragment,	 is	 converted	 to	a	TOSCA	collocation	group.	These	groups	are	 subsequently	added	 to	 the	 type-
level	TOSCA	file.	

function forward_dependency_processing():
 initialize_dependencies()

 foreach processing_fragment in annotated_source_code_classes:
 if (not(processing_fragment.isVisited)):
 processing_fragment.isVisited ← true
 additional_dependencies_found ← additional_dependencies(processing_fragment.getDependencies())
 processing_fragment.getDependencies().add(additional_dependencies_found)
 dependency_dictionary.add_pair (processing_fragment, processing_fragment.getDependencies()
 processing_fragment.isExplored ← true
 return

function additional_dependencies(dependent_fragments_list):

 additional_dependencies_found← EMPTY

 foreach processing_fragment in dependent_fragments_list:
 if (not(processing_fragment.isVisited)):
 processing_fragment.isVisited ← true
 processing_fragment.isIncluded ← true //marked as included in the dependencies of another node
 additional_dependencies_found.add(processing_fragment.getDependencies())
 additional_dependencies_found.add(additional_dependencies(processing_fragment.getDependencies()))
 fragment_dependencies.add(additional_dependencies_found)

 processing_fragment.isExplored ← true
 else if (processing_fragment.isExplored):
 processing_fragment.isIncluded ← true //marked as included in the dependencies of another node
 additional_dependencies_found.add(processing_fragment.getDependencies()) //add the dependencies of the node nevertheless

 return additional_dependencies_found

function initialize_dependencies():
 global dependency_dictionary ← EMPTY

 foreach processing_fragment in annotated_source_code_classes:
 processing_fragment.isVisited ← false
 processing_fragment.isIncluded ← false
 fragment_dependencies ← parse_annotation_for_dependencies()
 dependency_dictionary.add_pair (processing_fragment, fragment_dependencies)

return

Listing	4.	The	forward	dependency	algorithm	pseudocode	

	

	For	example	let	us	consider	an	example	application	composed	of	fragments	A,B,C…	M,	with	the	following	
dependencies:	

	

Table	3.	Example	fragmented	application	

Fragment	name	 Fragments	dependent	on	

A	 B,	E	

B	 -	

C	 E,	D	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 20	

D	 -	

E	 -	

F	 G,	H	

G	 -	

H	 -	

I	 J	

J	 K	

K	 -	

L	 C,	M	

M	 -	

	

Considering	this	application	as	input	to	the	forward	dependency	algorithm,	three	dependency	groups	will	
be	created,	as	presented	in	Figure	6	below:	

	

	
Figure	6:	Resolution	of	dependencies	using	forward	dependency	processing	

b) Bidirectional	dependency	processing	

A	 shortcoming	 of	 the	 approach	 described	 above	 is	 that	 when	 two	 fragments	 F1,F2	 request	 another	
fragment	F3	as	a	dependency,	 two	separate	groups	are	created;	one	will	contain	{F1,F3},	while	the	other	
will	 contain	 {F2,F3}.	 Obviously,	 this	 means	 that	 all	 three	 fragments	 should	 be	 collocated,	 but	 the	
component	optimizing	 the	deployment	 (the	Autonomic	Placement	&	Scheduling	Controller,	developed	 in	
WP4)	should	include	explicit	business	logic	to	handle	this	case.	Alternatively,	the	developer	should	annotate	
only	one	of	F1	and	F2	with	a	dependency	on	F2	or	F1	respectively,	and	F3.	However,	 in	order	to	alleviate	
the	developer	from	having	to	handle	a	multitude	of	method	dependencies,	we	include	processing	logic	that	
can	determine	that	{F1,F2,F3}	should	all	be	collocated.	

For	 this	 reason,	 for	 every	 edge	 	 e	∈ E ,	 describing	 a	 connection	 (V1→V2)	we	 also	 add	 the	 reverse	 edge		
(V1←V2),	and	then	apply	the	forward	dependency	algorithm	described	above.	

function bidirectional_dependency_processing():
 initialize_dependencies()
 assign_backward_dependencies()

 foreach processing_fragment in annotated_source_code_classes:
 if (not(fragment.isVisited)):
 processing_fragment.isVisited ← true

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 21	

 additional_dependencies_found ← additional_dependencies(fragment.getDependencies())
 processing_fragment.getDependencies().add(additional_dependencies_found)
 dependency_dictionary.add_pair (processing_fragment, processing_fragment.getDependencies())
 processing_fragment.isExplored ← true

function additional_dependencies(dependent_fragments_list):

additional_dependencies_found← EMPTY

 foreach processing_fragment in dependent_fragments_list:
 if (not(processing_fragment.isVisited)):
 processing_fragment.isVisited ← true
 processing_fragment.isIncluded ← true //marked as included in the dependencies of another node
 additional_dependencies_found.add(processing_fragment.getDependencies())
 additional_dependencies_found.add(additional_dependencies(processing_fragment.getDependencies()))
 fragment_dependencies.add(additional_dependencies_found)

 processing_fragment.isExplored ← true
 else if (processing_fragment.isExplored):
 processing_fragment.isIncluded ← true //marked as included in the dependencies of another node
 additional_dependencies_found.add(processing_fragment.getDependencies()) //add the dependencies of the node nevertheless
return additional_dependencies_found

function assign_backward_dependencies():
 foreach processing_fragment in dependency_dictionary.entries:
 foreach dependency in processing_fragment.getDependencies()
 dependency_dictionary.add_pair(dependency,processing_fragment) //the inverse of the already existing (processing_fragment,
dependency) relationship.

function initialize_dependencies():
 global dependency_dictionary ← EMPTY

 foreach processing_fragment in annotated_source_code_classes:
 processing_fragment.isVisited ← false
 processing_fragment.isIncluded ← false
 fragment_dependencies ← parse_annotation_for_dependencies()
 dependency_dictionary.add_pair (processing_fragment, fragment_dependencies)

Listing	5.	Bidirectional	Dependency	processing	algorithm	pseudocode	

A	graphical	representation	of	the	result	of	this	dependency	processing	is	Figure	7:	

	

	
Figure	7:	Resolution	of	dependencies	using	bidirectional	dependency	processing	

By	 default,	 bidirectional	 dependency	 processing	 is	 enabled	 in	 order	 to	 address	 the	 shortcomings	 of	 the	
forward	 dependency	 processing.	 However	 if	 more	 post-processing	 flexibility	 is	 required	 (e.g.	 a	 module	
considering	 different	 dependency	 categories),	 the	 forward	 dependency	mode	 is	 also	 available.	 The	 final	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 22	

output	 of	 these	 two	dependency	 processing	 algorithms	 is	 a	 TOSCA	 collocation	 policy	which	 includes	 the	
names	of	the	fragments	which	should	be	collocated.	

The	 anti-affinity	 statements	 are	 processed	 in	 a	 slightly	 different	 way:	 First,	 the	 list	 L	 which	 contains	
fragments	which	should	not	be	collocated	with	a	fragment	F	are	determined	from	the	annotations.	Then	for	
each	fragment		f	∈ L	the	dependency	set	is	determined	using	one	of	the	above-described	algorithms.	The	
final	 output	 of	 this	 processing	 is	 a	 TOSCA	 anti-affinity	 policy	which	 includes	 a	 list,	 containing	 as	 its	 first	
element	the	name	of	the	fragment	which	should	not	be	collocated	with	the	fragments	which	follow	in	the	
list.	 Once	 the	 dependencies	 are	 finalized,	 the	 relevant	 collocation	 and	 anti-affinity	 TOSCA	 groups	 are	
created.	 The	 entry	 point	 for	 the	 collocation	 group	 are	 the	 nodes	 which	 have	 not	 been	 marked	 as	
dependencies	of	other	nodes.		

2.2.3 The	TOSCA	assembler	
	

In	 the	 final	 stage	 of	 the	 deployment,	 the	 main	 sections	 of	 the	 file	 have	 already	 been	 created	 and	 are	
assembled	in	a	full	type-level	TOSCA	document.	Additionally,	information	on	TOSCA	dependencies	is	added	
to	 the	 type-level	 document	 in	 order	 to	 enable	 the	 correct	 parsing	 of	 the	 document.	 The	 completed	
document	 is	 now	 ready	 to	 be	 stored	 to	 the	 PrEstoCloud	 Repository,	 and	 a	 new	 event	 is	 sent	 to	 the	
PrEstoCloud	Communication	&	Messages	Broker	(D6.1)	so	that	the	document	can	be	further	processed	in	
the	PrEstoCloud	lifecycle.	

	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 23	

3. Resources	Adaptation	Recommender	

3.1 Approach		
The	 Resource	 Adaptation	 Recommender	 (RARecom)	 is	 the	 software	 tool	 that	 aims	 to	 reason	 about	
adaptation	actions	within	the	PrestoCloud	infrastructure.	Today	many	distributed	systems	utilize	cloud	and	
edge	resources	in	order	to	achieve	goals	such	as	cost	minimization,	high	availability,	lower	response	time,	
lower	energy	consumption	or	combinations	of	multiple,	often	competing,	goals.	In	order	to	achieve	those	
goals	it	is	important	to	implement	mechanisms	that	observe	the	current	state	of	the	system,	the	utilization	
of	the	different	resources	and	the	context	in	order	to	take	decisions	for	adaptation	at	the	right	time.	

In	deliverable	D2.1	 (Scientific	and	Technological	State-of-the-Art	Analysis),	chapter	3,	we	 investigated	the	
main	 resource	 adaptation	 and	 reconfiguration	 types	 that	 have	 been	 used	 in	 the	 related	 bibliography	
(horizontal	and	vertical	scaling,	VM	and	container	migration,	offloading	and	onloading).	The	RARecom	will	
be	 designed	 to	 implement	 adaptation	 in	 environments	 that	 combine	 cloud	 and	 edge	 resources.	 It	 is	 an	
open	 issue	whether	 the	 existing	 research	 and	 industrial	 approaches	 for	 cloud	 resource	 adaption	 can	 be	
applied	in	cloud-edge	environments.	According	to	a	whitepaper	published	by	OpenStack1,	cloud	computing	
has	 several	 similarities	 but	 also	 important	 differences	with	 edge	 computing.	 For	 example	 although	 both	
cloud	and	edge	environments	can	benefit	from	the	use	of	virtualized	resources	(CPU,	memory,	storage)		in	
edge	computing	we	have	the	capability	to	use	resources	closer	to	the	end-user	when	the	required	network	
quality	characteristics	cannot	be	met	due	 to	 technical	or	 financial	 limitations.	On	the	other	hand	 in	edge	
devices	we	have	more	restrictions	in	resource	or	energy	consumption.	So,	in	order	to	achieve	specific	goals	
in	edge	and	cloud	environments	that	PrEstoCloud	aims	to	support,	the	resource	adaptation	recommender	
must	be	designed	appropriately.	

As	described	next,	the	first	version	of	the	RARecom	is	a	rule-based	and	context-driven,	flexible	adaptation	
mechanism	 that	will	 serve	as	 the	basis	on	 top	of	which	we	will	 later	develop	more	advanced	adaptation	
strategies	 and	 functionalities	 by	 utilizing	 additional	 input	 (i.e.	 predictions	 from	 the	Workload	 Predictor)	
and	feedback	capabilities	in	order	to	continuously	improve	the	adaptation	triggering.	

We	have	identified	the	following	top-level	requirements	for	the	RARecom:	

1) Distributed	 architecture,	 compatible	with	 the	 overall	 PrEstoCloud	 architecture.	 PrEstoCloud	 is	 an	
event-driven	 software	 platform.	 The	 distributed	Message	 Broker	 (implemented	 using	 RabbitMQ)	
serves	 as	 the	 messaging	 infrastructure	 of	 PrEstoCloud	 which	 interconnects	 the	 different	
components	in	an	agile	and	loosely-coupled	manner.	The	RARecom	should	communicate	with	the	
other	components	of	PrEstoCloud	through	the	Message	Broker	.	

2) Easy	 deployment	 in	 edge	 and	 cloud	 resources.	 As	 PrEstoCloud	 aims	 to	 support	 application	 and	
microservice	deployment	 in	non-uniform	environments	 that	consist	 	of	edge	and	cloud	resources	
with	very	different	software	and	hardware	configurations	and	capabilities,	the	RARecom	should	be	
developed	 with	 technologies	 (such	 as	 multiplatform	 programming	 languages	 and	 libraries,	
virtualization	 and	 containerization	 technologies)	 that	 can	 support	multiple	 execution	 platforms	 (
processor	architectures	and	operating	systems).		

3) Flexibility	and	reconfiguration	capabilities.	The	RARecom	should	be	able	to	follow	the	evolution	of	
the	environment	that	it	supports,	as	edge	devices	join	or	leave	constantly	and	cloud	resources	are	
changing	following	the	trends	of	the	workload,	by	adapting	itself.		

4) Easy	 integration	 with	 other	 systems,	 utilization	 of	 technologies	 adopted	 in	 PrEstoCloud.	 Several	
PrEStoCloud	 components	 such	 as	 the	MCA	 and	 the	 SDM	 use	 the	 AMQP	 or	MQTT	 protocols	 for	
messaging,	 JSON	 format	 for	 the	 encoding	 of	 event	 payload	 and	 REST	 interfaces.	 The	 RARecom	

																																									
1	https://www.openstack.org/assets/edge/OpenStack-EdgeWhitepaper-v3-online.pdf			

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 24	

should	 follow	 common	 standards	 for	 the	 interconnections	 with	 the	 other	 components	 of	
PrEstoCloud.	

In	 terms	 of	 WP5	 work,	 we	 will	 develop	 and	 release	 the	 RARecom	 mechanism	 in	 two	 iterations.	 This	
document	describes	an	 initial	design	of	both	 iterations	along	with	 the	 implementation	details	of	 the	 first	
one.	

	

3.2 Architecture		
The	RARecom	(Figure	8)	aims	to	engage	the	run-time	operation	of	our	platform	since	it	provides	context-
aware,	 edge	 and	 cloud	 adaptation	 recommendations	 that	 may	 include	 changes	 to	 the	 already	 used	
resources	and	reconfigurations	with	respect	to	where	each	application	fragment	has	been	hosted.		

The	 RARecom	 receives	 as	 input	 the	 current	 processing	 topology	 and	 placement	 (i.e.	 resources	 used	 and	
hosting	location	of	each	application	fragment),	the	detected	situations,	predicted	workloads	along	with	the	
respective	 context	of	 the	used	and	 the	 available	 edge	devices.	 Based	on	 this,	 it	 generates	 as	output	 the	
recommendation	to	reconfigure	the	processing	topology,	e.g.,	to	introduce	new	processing	nodes,	replicate	
nodes	 for	 failover	 purposes,	 remove	 redundant	 or	 underused	 processing	 nodes	 and	 move	 application	
fragments	 among	 the	 available	 cloud	 and	 edge	 hosting	 nodes.	 For	 example,	 assume	 multiple	 streams	
coming	 from	 a	 variety	 of	 different	 cameras	 (i.e.	 CCTVs,	mobile	 phones).	 Based	 on	 the	 data	 volume	 and	
velocity	 of	 these	 streams,	 the	 RARecom	 can	 recommend	 adaptations	 that	 will	 affect	 the	 processing	
topology.	Such	adaptations	may	 involve	moving	away	or	closer	to	the	edge	certain	application	fragments	
(e.g.	 video	 transcoding,	 face	 detection)	 and/or	 instructing	 the	 use	 of	 additional	 instances	 of	 the	 same	
application	fragments	on	different	virtual	hosts.	We	note	that	the	RARecom	is	responsible	for	detecting	the	
appropriate	time	for	triggering	a	new	reconfiguration	while	it	dictates	the	minimum	reconfiguration	actions	
(e.g.	add	2	more	 instances	of	a	certain	resource)	and	 indicates	which	edge	devices	should	be	excluded	 in	
the	new	application	topology	(based	on	their	context).	As	in	the	initial	deployment	flow,	the	final	decision	
about	what	it	will	actually	be	deployed/reconfigured	(i.e.	expressed	in	an	instance-level	TOSCA)	is	made	by	
the	Application	Placement	&	Scheduling	Controller	who	is	responsible	for	solving	a	constraint	programming	
problem	that	expresses	the	optimization	goals	set	by	the	DevOps.	In	any	case	the	Application	Placement	&	
Scheduling	Controller	should	respect	the	minimum	reconfiguration	actions	set	by	the	RARecom	and	extend	
them	 if	 it	 is	necessary,	according	 to	 the	optimization	goals	 (e.g.	add	3	 instances	of	 the	 resource	 that	 the	
RARecom	indicated).	

	
Figure	8.	The	RARecom	Business	Logic	

To	facilitate	the	operation	of	the	RARecom,	the	DevOps	need	to	register	the	scalability	requirements	of	the	
deployed	 applications	 and	 services.	 Based	 on	 these	 requirements	 and	 constraints,	 adaptation	 rules	 are	
created	 and	 deployed.	 Adaptation	 rules	 are	 at	 the	 core	 of	 our	 approach.	 They	 enable	 the	 triggering	 of	
reconfiguration	recommendations	based	on	the	knowledge	about	the	current	deployment	topology	as	well	
as	 the	 predicted	 workloads	 and	 context	 of	 computing	 resources.	 Adaptation	 actions	 are	 triggered	 by	
detected	 situations.	 The	 actual	 adaptation	 result	 is	 determined	 by	 a	 series	 of	 “meta-rules”	 which	 are	
created	based	on	the	scalability	 requirements	expressed	by	the	DevOps	 (as	explained	below).	Meta-rules	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 25	

may	 specify	 for	 example	 the	 number	 of	 instances	which	 are	 actually	 used	 to	 implement	 the	 adaptation	
prescribed	in	a	scalability	rule.	A	further	feature	of	the	proposed	approach	is	the	capability	to	improve	the	
adaptation	meta-rules	based	on	analyses	of	post-reconfiguration	data,	that	is,	data	that	shows	how	well	a	
recommended	and	eventually	implemented	reconfiguration	has	proved	in	reality.		

The	 architecture	 of	 the	 RARecom	 is	 shown	 in	 Figure	 9.	 	 At	 the	 core	 of	 the	 RARecom	 lays	 a	 rule	 engine	
(Drools	 7.7.0),	 comprising	 the	 production	 and	 working	 memories	 as	 well	 as	 an	 inference	 engine.	 The	
inference	engine	 is	 responsible	 for	matching	active	 rules	 to	 triggering	conditions	 (situations	and	context)	
and	for	managing	multiple,	active	rules.	Production	memory	is	used	to	maintain	and	configure	adaptation	
rules	while	the	working	memory	contains	the	facts	that	will	be	used	by	the	inference	engine	when	firing	the	
rules.	 Asynchronous	 communication	 with	 other	 Meta-Management	 Layer	 components	 (Mobile	 Context	
Analyser,	Workload	Predictor	and	Situation	Detection	Mechanisms)	is	done	through	the	broker	and	its	pub-
sub	mechanism.	The	Control	Layer	feeds	the	RARecom	with	the	current	deployment	of	the	applications	and	
services	 at	 the	 cloud	 /	 edge	 infrastructure.	 The	 RARecom	 generates	 as	 output	 a	 new	 deployment	
configuration	(i.e.	new	type-level	TOSCA),	which	is	fed	to	the	Control	Layer	for	optimizing	it	and	physically	
deploying	 it	 on	 the	 cloud	 /	 edge	 infrastructure.	 Additionally,	 the	 architecture	 contains	 a	 Feedback	
mechanism,	which	is	used	to	improve	the	adaptation	rules.		

Adaptation	 rules	 are	 provided	 by	 the	 DevOps	 in	 the	 form	 of	 scalability	 requirements,	 which	 are	
subsequently	 translated	 to	 scalability	 rules,	 e.g	 “If	 Average(CPU)>80%	 then	 Scale_out”.	 In	 the	 previous	
example,	80%	is	a	threshold	provided	by	the	DevOps	who	also	defines	abstractly	the	required	adaptation	
action	 (Scale_out).	 This	 data	 is	 then	 used	 by	 adaptation	 meta-rules	 which	 determine	 the	 number	 of	
additional	instances	to	be	allocated	to	the	processing	service.	

	
Figure	9.	The	RARecom	Architecture	

The	Rule	Adaptation	Controller,	which	 communicates	with	 the	 active	Drools	 engine	 session,	 handles	 the	
rule	 management	 commands	 (such	 as	 rule	 addition,	 rule	 deletion,	 rule	 list	 fetching)	 in	 runtime.	 The	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 26	

Feedback	mechanism	uses	the	Rule	Adaptation	Controller	in	order	to	modify	the	RARecom	adaptation	rules		
in	 runtime.	 The	 ActionPub	 Interface	 converts	 adaptation	 actions	 produced	 by	 the	 rules	 in	 the	 Pattern	
Matcher	 in	 JSON	 format	 and	 publishes	 them	 to	 the	 Message	 Broker	 at	 the	 desired	 topic.	 The	 Context	
Service	Proxy	is	responsible	for	the	communication	of	the	Drools	engine	with	the	repository	(ElasticSearch)	
of	 the	 Mobile	 Context	 Analyzer.	 The	 Event	 Loader	 subscribes	 to	 (situation)	 events	 produced	 be	 the	
Situation	 Detection	 Mechanism	 (through	 the	 Broker)	 receives	 them	 and	 inserts	 them	 into	 the	 working	
memory	 as	 JsonObjects	 (thus	 it	 performs	 the	deserialization	of	 the	 JSON	 situation	payload).	 	 Finally,	 the	
Reconfigured	 Tosca	 Generator	 receives	 adaption	 events	 produced	 by	 the	 adaptation	 rules	 which	 are	
published	 by	 using	 the	 ActionPubInterface,	 communicates	with	 the	 Control	 Layer	 to	 receive	 the	 current	
instantiated	 TOSCA	 topology	 and	 produces	 a	 new	 TOSCA	 topology	which	 expresses	 the	 desired	 adapted	
topology.	 The	 Reconfigured	 TOSCA	 generator	 sends	 the	 new	 TOSCA	 topology	 to	 the	 Control	 Layer	 for	
implementation.	

3.3 Implementation	
The	 current	 implementation	 of	 the	 RARecom	 is	 available	 online	 at:	 https://gitlab.com/prestocloud-
project/resource-adaptation-recommender		

The	general	format	of	the	adaptation	logic	is	that	is	executed	through	Drools	rules	is	the	following:	

- When	
• a	situation	(or	a	combination	of	situations)	occurs	

- Then		
• examine	if	the	context	conditions	are	true	
• If	they	are	true	produce	an	event	that	will	trigger	adaptation	actions	

The	following	example	(extract	 from	Rules.drl)	shows	how	the	different	components	of	the	RARecom	are	
used	in	the	context	of	adaptation	rules.			

global gr.iccs.presto.RARecom.ActionPubInterface ap;
global gr.iccs.presto.RARecom.ContextServiceProxy ctx;

rule "adaptation-rule-1"
when
 $s: Situation(message == "cpu low") // eventLoader subscribes to Broker and inserts
the received events in Drools working memory
then
 String qryTemplate = ctx.getContextConditionQuery("context-query2"); //context-
query2 : context queries can be abbreviated by short names in the file context-
mappings.properties
 String qry = qryTemplate.replace("~#IP#~",$s.getSource()); // if the context query is
a template we can instantiate it at runtime with data that can come from Situation events
by replacing parameters (i.e. "~#IP#~") with values (i.e. $s.getSource())
 JsonObject $c = ctx.evaluateContextQuery(qry); // ContextServiceProxy executes the
query and converts the result in an instance of the class JsonObject
 Integer hits = $c.get("hits").getAsJsonObject().get("total").getAsInt(); // Here we
read the value of the parameters hits from the deserialized JSON string that MCA
(ElasticSearch) returned

 if (hits > 0) { // decision to publish an event that denotes a new adaptation
action
 Action $a = new Action(); // create a new Action object
 $a.setSource($s.getSource());
 $a.setMessage("scale_up");
 $a.setDate(new Date());
 publishAction(ap, "rar-actions", $a); //ap = ActionPublisher Service, "rar-
actions" : the Broker topic
 }
end

Listing	6.	File	RULES.drl	

	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 27	

The	EventLoader	subrcibes	to	situations	produced	by	the	Situation	Detection	Mechanism.		When	a	situation	
event	is	detected	with	the	desired	properties	(for	example	a	situation	occurs	with	message	“CPU	low”)	then	
the	system	can	evaluate	one	or	more	context	conditions	by	using	the	ContextServiceProxy	API.	The	Context	
Service	Proxy	executes	context	queries	by	communicating	with	the	ElasticSearch	Query	API	of	the	Mobile	
Context	 Analyzer.	 The	 results	 are	 JSON	 data	 which	 are	 converted	 to	 instances	 of	 JsonObject	 by	 the	
ContextServiceProxy.	The	JsonObject	classes	provide	JSON	parsing	and	deserialization	methods	which	can	
be	used	within	a	rule	to	retrieve	the	desired	fields	returned	by	the	context	queries.	The	most	common	way	
to	decide	whether	a	context	is	true	will	be	to	examine	the	number	of	results	returned	(total	hits).	We	can	
retrieve	the	number	of	results	with	the	following	command:	
	
 Integer hits = $c.get("hits").getAsJsonObject().get("total").getAsInt();

where	$c	is	a	JSON	object	retrieved	by	the	ContextServiceProxy	upon	executing	a	query	as	the	one	shown	
in	Listing	7.	Then	 the	mechanism	constructs	an	Action	event	which	may	contain	 field	values	 retrieved	by	
Situations	 or	 context	 queries	 or	 context	 query	 templates	 and	 publish	 it	 using	 the	 ActionPubInterface.	
Names	 can	 be	 given	 to	 context	 queries	 by	 using	 the	 configuration	 file	 context-mappings.properties,	 as	
presented	 in	 Listing	 7.	 Listing	 7	 presents	 a	 context-query	 template.	 Templates	 are	 queries	 that	 contain	
parameters	 that	must	be	defined	 in	 runtime.	 In	 the	specific	example	a	 rule	 that	uses	 this	 template	must	
replace	in	runtime	the	string	~#IP#~	with	the	source	IP	address	of	an	event	by	using	the	method	replace	as	
shown	in	Listing	6	(command	:	qryTemplate.replace("~#IP#~",$s.getSource())). 	

context-query2 = { \
 "query" : { \
 "match" : { \
 "src_ip" : { \
 "query" : "~#IP#~" \
 } \
 } \
 } \
}

Listing	7.	File	context	context-mapping.properties	

The	RARecom	runs	as	a	Docker	service.	Upon	startup	it	initializes	the	Drools	production	memory	by	reading	
and	compiling	the	rules	contained	in	configuration	files	placed	under	the	folder	resources/rules.		
	
These	rules	can	be	modified	at	runtime	by	the	RuleAdaptationController.	This	component	provides	APIs	for	
the	 retrieval	of	a	 list	of	 the	currently	 running	 rules	 (per	package),	 the	 removal	of	a	 specific	 rule,	and	 the	
addition	of	a	new	rule	(by	providing	the	rule	name,	the	package	that	this	rule	belongs	and	the	rule	text).	
The	RuleAdaptationController	 informs	 the	 user	 if	 a	 rule	 cannot	 be	 added	 because	 there	 are	 (syntactic)	
errors.	 This	 API	 can	 be	 used	 by	 the	 Feedback	 Mechanism	 in	 order	 to	 modify	 the	 Meta-rules	 of	 the	
RARecom	at	runtime	and	thus	improving	its	effectiveness.	
	
The	 adaptation	 action	 events	must	 be	 transformed	 to	 actual	 cloud-edge	 resource	 adaptation	workflows.	
This	 process	 starts	 with	 the	 ReconfiguredToscaGenerator	 which	 communicates	 with	 the	 PrEstoCloud	
control	layer	in	order	to	retrieve	the	current	TOSCA	topology	deployed.	For	example	when	the	adaptation	
action	 is	 “Scale_in”	 the	 ReconfiguredToscaGenerator	 will	 generate	 a	 new	 type-level	 TOSCA	 file	 to	 be	
considered	for	instantiation	by	the	Application	Placement	&	Scheduling	Controller.	

3.4 Adaptation	rules	
A	 central	 element	 in	 the	operation	of	 the	RARecom	 is	 the	 creation	 and	enforcement	of	 scalability	 rules.	
While	 existing	 solutions	 such	 as	 Amazon	 AWS	 or	 Google	 Cloud	 Compute	 also	 offer	 to	 the	 DevOps	 the	
opportunity	to	set	automatic	reactions	based	on	the	workload	monitored,	 the	adaptation	policies	need	a	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 28	

lot	 of	 input,	 are	 not	 optimal,	 and	 usually	 need	 periodic	manual	 evaluation	 by	 the	DevOps	 to	 determine	
whether	they	are	still	efficient	and	relevant.	

We	propose	instead	a	different	approach,	which	requires	from	the	DevOps	a	single	value	for	each	attribute	
relevant	to	the	adaptation,	called	a	threshold	value.	Optionally,	the	DevOps	can	also	provide	PrEstoCloud	
with	a	 cooling-down	period	between	 two	adaptations,	which	determines	 the	minimum	 interval	between	
two	adaptations	allowed.	

3.4.1	Scalability	Rules	
The	main	input	of	the	DevOps	to	the	RARecom	are	scalability	rules,	which	abstractly	define	the	adaptation	
actions	 needed,	 in	 relation	 to	 specific	 metrics	 thresholds.	 These	 rules	 contain	 the	 threshold	 value	
mentioned	above,	and	are	used	by	appropriate	“meta-rules”	to	determine	the	actual	adaptation	action.	

The	general	format	of	a	scalability	rule	is	the	following:	

	

𝒊𝒇 𝑀𝑒𝑡𝑟𝑖𝑐 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕/𝑺𝒄𝒂𝒍𝒆_𝒊𝒏	,	or		𝒊𝒇 𝑀𝑒𝑡𝑟𝑖𝑐 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒊𝒏/
𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕		

	

An	instantiated	example	of	a	scalability	rule	would	be	the	following:	

	

	𝒊𝒇 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑃𝑈!"#$%&' > 80% 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕	

Such	scalability	rules	may	contain	additional	attributes	to	be	defined	by	the	DevOps.	For	example	for	the	
above-mentioned	AverageCPUcluster	metric,	the	DevOps	can	define	the	time	period	over	which	the	average	
value	of	the	metric	is	calculated.		

3.4.2	Meta-rules	
Meta-rules	 describe	 the	 concrete	 parameters	 of	 adaptation	 actions.	 They	 use	 the	 adaptation	 threshold	
value	 input	 by	 the	 DevOps	 to	 create	 a	 series	 of	 rules	 for	 horizontal	 scaling.	 These	 rules	 take	 into	
consideration	 the	 observed	 value	 of	 the	 metric,	 the	 threshold	 input	 by	 the	 DevOps	 and	 the	
maximum/minimum	 values	 of	 the	 metric	 (assumed	 to	 be	 known).	 Meta-rules	 are	 evaluated	 only	 if	 a	
relevant	scalability	rule	has	been	triggered.	

The	format	of	the	ith	meta-rule	is	the	following:	

	

𝑰𝒇 𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑! < 𝑀𝑒𝑡𝑟𝑖𝑐𝑉𝑎𝑙𝑢𝑒 ≤ 𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑! 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕/𝑺𝒄𝒂𝒍𝒆_𝒊𝒏 𝒃𝒚 𝒇(𝒊) 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔,
𝑤ℎ𝑒𝑟𝑒 0 < 𝑖 < 𝑛 		

	

In	both	cases,	𝑛	is	the	number	of	meta-rules	introduced	for	each	scaling	rule,	and	𝑖	is	the	integer	identifier	
of	 a	 meta-rule.	 Initially,	 we	 set	 𝑛	 equal	 to	 3,	 but	 this	 value	 is	 subject	 to	 updates	 by	 the	 Feedback	
Mechanism.	The	number	of	 instances	to	be	added	or	removed,	 is	determined	by	a	 function	𝒇,	which	 is	a	
simple	 linear	 function	of	 𝑖	 .	For	example	𝑓 𝑖 = 𝑖	 can	be	used	 for	defining	concrete	 increasing	number	of	
instances	while		𝑓 𝑖 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∙ !

!
		can	be	used	for	expressing	the	number	of	instances	

to	be	scaled	out	or	scaled	in	as	a	proportion	of	the	already	deployed	cluster	(e.g.	add	50%	more	instances).	

In	 the	 case	 of	 scaling	 out,	 the	 upper	 and	 lower	 bounds	 for	 the	 ith	 (starting	 from	 i	 =	 1)	 meta-rule	 are	
determined	as	follows:	

	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 29	

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑! = 𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# + 𝑀𝑒𝑡𝑟𝑖𝑐!"# −𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# ∙ !!!
!

 ,𝑤ℎ𝑒𝑟𝑒 0 < 𝑖 < 𝑛 and,

𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑! = 𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# + 𝑀𝑒𝑡𝑟𝑖𝑐!"# −𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# ∙
𝑖
𝑛

 ,𝑤ℎ𝑒𝑟𝑒 0 < 𝑖 < 𝑛 	

	

In	 the	 case	 of	 scaling	 in,	 the	 upper	 and	 lower	 bounds	 for	 the	 ith	 (starting	 from	 i	 =	 1)	 meta-rule	 are	
determined	as	follows:	

	

𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑! = 𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# − 𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# −𝑀𝑒𝑡𝑟𝑖𝑐!"# ∙ !!!
!

 ,𝑤ℎ𝑒𝑟𝑒 0 < 𝑖 < 𝑛 and,

𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑! = 𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# − 𝑀𝑒𝑡𝑟𝑖𝑐!!!"#!!"# −𝑀𝑒𝑡𝑟𝑖𝑐!"# ∙
𝑖
𝑛

 ,𝑤ℎ𝑒𝑟𝑒 0 < 𝑖 < 𝑛 	

	

To	better	illustrate	this,	let	us	consider	that	the	DevOps	has	provided	the	following	scalability	rule	as	part	of	
the	initial	deployment	requirements:	

𝑰𝒇 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑃𝑈 > 70% 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕

	

Let	us	also	assume	that	 the	 initial	number	of	 instances	 in	the	topology	 is	12,	and	that	 the	more	complex	
function	𝑓 𝑖 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∙ !

!
	 is	used	to	determine	the	number	of	instances	in	the	meta-

rules.	Since	it	is	an	initial	deployment	n	is	set	to	3,	and	so	the	meta-rules	which	will	be	initially	created	are	
the	following:	

	

𝑹𝒖𝒍𝒆 𝟏: 𝑰𝒇 70% < 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑃𝑈) ≤ 80% 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕 𝒃𝒚 4 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 		

𝑹𝒖𝒍𝒆 𝟐: 𝑰𝒇 80% < 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑃𝑈) ≤ 90% 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕 𝒃𝒚 8 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 		

𝑹𝒖𝒍𝒆 𝟑: 𝑰𝒇 90% < 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑃𝑈) ≤ 100% 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕 𝒃𝒚 12 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 		

	

The	meta-rules	created	initially,	can	be	dynamically	updated	based	on	the	current	number	of	instances	in	
the	 topology,	 and	 the	 observed	 results	 after	 an	 adaptation	 has	 been	 implemented.	 For	 example,	 if	 it	 is	
observed	that	on	the	80%	of	the	scaling	out	adaptation	cases	(based	on	rule	3),	a	second	scaling	out	action	
follows	 (shortly	 after,	 based	 on	 rule	 1)	 then	 the	 rule	 3	 can	 be	modified	 by	 the	 Feedback	 component	 as	
follows:	

	

𝑹𝒖𝒍𝒆 𝟑: 𝑰𝒇 90% < 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐶𝑃𝑈) ≤ 100% 𝒕𝒉𝒆𝒏 𝑺𝒄𝒂𝒍𝒆_𝒐𝒖𝒕 𝒃𝒚 16 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 		

	

These	improvements	on	the	meta-rules	based	on	prior	knowledge	will	be	part	of	the	Feedback	Mechanism	
subcomponent,	which	will	be	implemented	in	the	second	iteration	of	the	RARecom.	Furthermore,	while	in	
the	 approach	outlined	 above	only	 horizontal	 scaling	 is	 used,	meta-rules	 can	be	enhanced	 to	 additionally	
allow	the	expression	of	vertical	scaling	adaptations.	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 30	

4. Conclusions	and	Future	Work	
	

This	deliverable	presented	the	first	version	of	the	Data-Intensive	Application	Fragmentation	&	Deployment	
Recommender	 and	 the	 Resources	Adaptation	 Recommender	which	 allow	 the	 Control	 layer	 to	 perform	 a	
deployment	of	 a	 cloud	application	at	 the	 level	of	 granularity	desired	by	 the	developer	and	 following	 the	
requirements	set	by	the	DevOps.	The	two	recommenders	use	the	type-level	TOSCA	file	as	their	output	 in	
order	to	send	both	the	initial	topology	as	well	as	any	required	reconfiguration.		

The	annotations	system	and	the	policy	file	used	for	the	DIAFDRecom	were	designed	in	a	way	that	permits	
the	 definition	 of	 new	 types	 of	 requirements	 and	 attributes.	 This	 enables	 any	 adopter	 of	 PrEstoCloud	 to	
define	new	metrics	inside	their	annotations	scheme,	as	well	as	to	define	new	classes	of	requirements	inside	
the	 policy	 file.	 All	 of	 these	 requirements	 can	 be	 transcribed	 in	 a	 type-level	 TOSCA	 file,	 which	 can	 be	
interpreted	by	the	Control	layer.	

Our	 next	 objective	 will	 be	 the	 refinement	 of	 the	 Meta-management	 layer	 components,	 as	 part	 of	 the	
second	iteration	of	T5.1,	T5.3	and	T5.4.	Concerning	the	DIAFDRecom	we	will	work	on	improving	the	policy	
file	 input	and	the	type-level	TOSCA	file	output,	 in	order	 to	make	the	 learning	curve	of	 the	component	as	
low	as	possible,	while	maintaining	 its	expressivity.	With	regards	to	the	RARecom,	we	will	 focus	mainly	on	
implementing	 the	 feedback	 mechanism	 and	 extending	 the	 capabilities	 for	 facilitating	 the	 creation	 and	
refinement	of	adaptivity	rules.		

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 31	

5. References	
								

OASIS,	2017.	Topology	and	orchestration	specification	for	cloud	applications	version	1.2,	Committee	
Specification	Draft	01,	OASIS	Standard.	Available	online:	http://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.pdf	.	

	

	

	 	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 32	

APPENDIX	I:	Specification	of	the	type-level	TOSCA	file	
	

This	appendix	contains	information	on	the	internal	structure	of	the	type-level	TOSCA	file,	which	is	the	
primary	output	of	the	two	recommenders.	The	main	sections	of	the	type-level	file	are	the	following:	

Table	4.	Description	of	the	TOSCA	segments	present	in	the	type-level	TOSCA	file	

Type-level	TOSCA	segment	 Description		

Metadata	 General	requirements,	described	below	in-depth	

Description	 A	textual	description	of	the	TOSCA	file	

Imports	 A	 list	 of	 csar	 (renamed	 zip	 compression)	 files	
which	 should	 be	 searched	 for	 additional	 node	
declarations	

Node	types	 Definitions	of	processing	nodes	and	property	
nodes,	described	below	in-depth	

Relationship	types	 Definitions	of	TOSCA	relationships	

Capability	types	 Definitions	of	TOSCA	capabilities	

Topology	template	/	Policies	 A	topology_template	sub-segment	describing	
various	policies	which	should	be	followed	during	
deployment,	described	below	in-depth	

Topology	template	/	Node	templates	 A	topology_template	sub-segment	describing	the	
mapping	of	annotated	code	fragments	to	
processing	nodes,	described	below	in-depth	

	

I.1	The	Metadata	Segment	
	

	
Listing	8.	The	TOSCA	metadata	segment	

	

The	metadata	 segment	 includes	 information	which	characterizes	 the	overall	deployment	of	a	TOSCA	 file,	
and	cannot	be	included	in	the	subsequent	segments.	It	contains	the	following	fields:	

	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 33	

Table	5.	The	TOSCA	metadata	fields	

Metadata	Field	 Description	

template_name		

Fields	reserved	for	internal	use	and	documentation	template_author	

template_version	

CostThreshold	
The	materialization	of	the	Budget	Requirement	

TimePeriod	

ProviderName_id	
Fields	reflecting	a	Provider	Requirement.	The	suffix	contains	the	
underscore	and	the	integer	id		of	the	requirement	ProviderRequired_id	

ProviderExcluded_id	

MaxInstances	 The	maximum	number	of	processing	instances	that	can	be	
concurrently	used	at	any	single	time	

MetricToMinimize	 The	Business	Goal	set	in	the	policy	file	

	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 34	

I.2	The	Node	Types	segment	

	
Listing	9.	A	sample	from	the	node_types	segment	

The	 Node	 Types	 segment	 includes	 information	 which	 is	 used	 to	 correctly	 implement	 the	 hosting	
requirements	of	the	application.	Two	types	of	nodes	are	contained:	Firstly,	property	nodes	which	are	used	
to	describe	 concepts	 specific	 to	 PrEstoCloud	 (e.g.	 the	 first	 node	of	 the	 two	 illustrated	 above	describes	 a	
JPPF	agent).	Each	of	these	nodes	has	unique	attributes,	defining	core	elements	of	the	PrEstoCloud	platform	
(described	 in	greater	detail	 in	the	TOSCA	Definitions	Creator	subsection).	Secondly,	this	segment	 includes	
processing	nodes	which	denote	the	resources	and	attributes	a	compute	node	should	possess,	 in	order	to	
undertake	the	processing	of	a	certain	type	of	a	fragment.	Processing	nodes	follow	a	very	specific	structure	
containing	the	following	fields:	

Table	6.	The	fields	of	a	TOSCA	processing	node	

Processing	node	field	 Description	

description		

	
Fields	which	describe	the	
function	of	a	node,	indicate	
possibly	inherited	properties	
from	a	parent	node	and	specify	derived_from	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 35	

capability	 that	the	node	which	they	
describe	should	be	able	to	
perform	processing	at	
container-level.	

node	

relationship	

occurrences	 A	range	containing	the	
minimum	and	the	maximum	
number	of	nodes	which	can	be	
employed	to	process	the	hosted	
application	fragment.	

host-num_cpus	 A	range	containing	the	
minimum	and	maximum	
number	of	CPUs	which	can	be	
used	for	the	processing	of	the	
fragment.	

host-mem_size	 A	range	containing	the	
minimum	and	maximum	
number	of	GB’s	that	the	host	
should	have	in	its	RAM,	which	
can	be	used	for	the	processing	
of	the	fragment.	

host-disk_size	 A	range	containing	the	
minimum	and	maximum	disk	
space	(in	GB’s)	which	should	be	
available	for	storage	purposes	
of	the	fragment.	

os-architecture	 The	acceptable	processor	
architectures	that	can	be	used	
for	deployment.	

os-type	 The	family	of	the	operating	
system	(e.g.	Windows,	Linux,	
Solaris	etc.)	

os-distribution	 The	particular	operating	system	
which	will	be	used	in	the	
processing	node.	

resources-type	 The	permissible	types	of	
hosting	environments	for	the	
particular	processing	node,	
which	are	cloud	and	edge	or	
cloud	(only).		

excluded_devices-identifier	 The	identifiers	of	the	edge	
devices	which	cannot	be	used	
to	host	the	particular	
processing	node.	

	

	

	

	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 36	

I.3	The	Policies	segment	
	

	
Listing	10.	A	sample	from	the	policies	segment	

	

The	 policies	 segment	 as	 well	 as	 the	 following	 node_templates	 segment,	 is	 located	 inside	 the	
topology_template.	 It	 contains	 the	 collocation	 and	 the	 anti-affinity	 groups,	which	 reflect	 the	 collocation	
requirements	 of	 the	 PrEstoCloud	 model.	 The	 fragments	 comprising	 a	 collocation	 group	 should	 be	
collocated	if	this	is	possible.	On	the	other	hand,	the	first	fragment	mentioned	inside	an	anti-affinity	group	
should	never	be	collocated	with	the	rest	of	the	fragments.	The	groups	reflect	the	collocation	requirements	
which	are	originally	expressed	by	the	developer	in	the	form	of	dependency	and	anti-affinity	annotations.		

Table	7.	The	fields	of	a	policy	node	

Policy	node	field	 Description	

type	

	

The	type	of	the	group,	which	can	either	be	a	collocation	group	or	a	group	
signifying	the	anti-affinity	of	a	fragment	with	the	rest.		

targets	 The	names	of	the	processing	fragments	which	comprise	the	group.	

	

I.4	The	Node_templates	segment	
	

	
Listing	11.	A	sample	from	the	node_templates	segment	

The	 node	 templates	 segment	 contains	 information	 on	 the	 assignment	 of	 processing	 fragments	 to	 the	
processing	node	types	defined	in	the	Node	Types	segment.	There	are	two	types	of	TOSCA	nodes	which	are	
included	 in	 this	 segment:	 Fragment	 nodes,	which	 describe	 the	 annotated	 fragment,	 and	mapping	 nodes	
which	define	where	a	particular	fragment	should	be	processed.	

PrEstoCloud	GA	732339	Deliverable	D5.5	

“Proactive	Cloud	Resources	Management	at	the	Edge	for	efficient	Real-Time	Big	Data	Processing”	
	

2018	©	Copyright	lies	with	the	respective	authors	and	their	institutions.	

	 	 	 	 37	

Table	8.	The	fields	of	a	fragment	node	

Fragment	node	field	 Description	

type	

	

The	TOSCA	type	of	the	node.	

id	 The	id	of	the	property	node,	which	is	a	monotonically	increasing	
integer.	

name	 The	name	of	the	fragment,	more	precisely	reflecting	the	actual	code	
hierarchy	and	the	naming	of	java	components.	

onloadable	 A	Boolean	variable	specifying	whether	the	fragment	can	be	executed	
on	edge	devices	or	not.	

execute	 The	name	of	the	mapping	node	which	will	map	the	current	fragment	
to	a	processing	node	type.	

	

Table	9.	The	fields	of	a	mapping	node	

Mapping	node	field	 Description	

type	

	

The	 TOSCA	 type	 of	 the	 node,	which	 should	match	with	 one	 of	 the	
processing	nodes	defined	in	the	Node	Types	segment.	

	

	

