
PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Project acronym: PrEstoCloud

Project full name:
Proactive Cloud Resources Management at the

Edge
for efficient Real-Time Big Data Processing

Grant agreement number: 732339

D6.1 Architecture of the PrEstoCloud
platform

Deliverable Editor: Nenad Stojanovic, Nissatech

Other contributors: SOFTWARE AG, ActiveEON ,ICCS ,CNRS, Ubitech, JSI

Deliverable Reviewers: Giannis Ledakis (Ubitech)
George Kioumourtzis (Aditess)

Deliverable due date: 31/03/2018

Submission date: 30/06/2018

Distribution level: Public

Version: 1.0

2018 © Copyright lies with the respective authors and their institutions.

1

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

This document is part of a research project funded
by the Horizon 2020 Framework Programme of the

European Union

Change Log

Version Date Amended by Changes

0.1 16/03/2018 Nenad Stojanovic Initial structure based on D2.3

0.2 01/05/2018 Ubitech Table of Contents

0.3 10/05/2018 All Initial content, interfaces

0.4 21/05/2018 All Updated content, interfaces

0.5 28/05/2018 All Updated content, interfaces
Use cases input

0.6 28/05/2018 All Updated content, interfaces,
architecture

0.7 05/06/2018 All Updated content, interfaces,
architecture

0.7.1 30/05/2018 Ubitech Section 5 content

0.75 08/06/2018 All Updated content, interfaces,
architecture

0.8 12/06/2018 All Updated content, interfaces,
architecture

0.81 14/06/2018 All Updated content, interfaces,
architecture

0.84 16/06/2018 All Updated content, interfaces,
architecture

0.87 19/06/2018 All Updated content, interfaces,
architecture

0.89 22/06/2018 All Updated content, interfaces,
architecture

0.9 25/06/2018 Nissatech Harmonization

0.95 28/06/2018 Ubitech, Aditess Review

1.0 30/06/2018 Nissatech Ready for submission

2018 © Copyright lies with the respective authors and their institutions.

2

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Table of Contents

Change Log...2

Table of Contents..3

List of Figures...5

List of Abbreviations...6

1. Executive Summary...7

2. Introduction...8

2.1 Scope.. 8

2.2 Relation to PrEstoCloud Tasks...8

2.3 Structure...8

3. PrEstoCloud Integrated Framework Architecture...9

3.1 The PrEstoCloud Platform..9

3.2 Detailed Description of the Components...10

3.3 Detailed Description of the Interfaces...11

3.3.1 Interfaces of the Meta-management Layer Components.............................11

3.3.2 Interfaces of the Control Layer Components..21

3.3.3 Interfaces of the Cloud-Edge Communication Layer....................................33

3.3.4 Communication through the Broker...37

4. Requirements Refinement...45

5. Technical Integration and Planning..46

5.1 Introduction...46

5.2 Integration at Deployment Level...47

5.2.1 Using Docker Compose for Integration...47

5.2.2 Sandbox-based approach...48

5.3 Integration at Interface Level..48

5.4 Code Level Integration..48

5.5. Knowledge level integration...49

5.6 Integration Planning..49

5.6.1 Multi-Iteration/Release Plan..50

6. Conclusions..52

7. References...53

Appendix A – Broker: additional instructions related to the architecture..................54

A1. The structure of the topics..54

A2. Broker Usage Guide..56

Appendix B – Monitoring the Edge: On/Offloading Client..66

Appendix C – Technical integration in Use cases..69

2018 © Copyright lies with the respective authors and their institutions.

3

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

LiveU Use Case...69

CVS Use Case..70

Aditess Use Case...71

2018 © Copyright lies with the respective authors and their institutions.

4

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

List of Figures
Figure 1: PrEstoCloud Initial Conceptual Architecture (D2.3)---------------------------------9

Figure 2: PrEstoCloud Integrated Framework Architecture------------------------------------9

Figure 3: Meta-Management Layer Component diagram-------------------------------------20

Figure 4: Meta-Management Layer Sequence diagram---------------------------------------21

Figure 5: Control Layer Component diagram---32

Figure 6: Cloud-Edge Layer Component and Sequence diagram--------------------------33

Figure 7: Sequence diagram for (i) Registration of edge node and (ii) New deployment
or reconfiguration of the application.---37

Figure 8: Update in the list of requirements--45

Figure 9: PrEstoCloud project group in GitLab---49

Figure 10: PrEstoCloud Milestones as part of the development and integration plan50

Figure 11: Meaning of icons used to show the functionality of On/Offloading Agent 66

Figure 12: Both aggregating and processing data are performed in the container
running on the edge node---66

Figure 13: Presence of mobile phone or tablet--67

Figure 14: Stop the processing data on the edge node and start the processing data on
the cloud performed by the On/Offloading Client---67

Figure 15: Stop both aggregating and processing data on the edge node and start
them on the cloud performed by the On/Offloading Client----------------------------------68

Figure 16: Mapping of the LiveU use case to the conceptual architecture--------------69

Figure 17: Mapping of the CVS use case to the conceptual architecture----------------70

Figure 18: Mapping of the Aditess use case to the conceptual architecture-----------72

2018 © Copyright lies with the respective authors and their institutions.

5

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

List of Abbreviations
The following table presents the acronyms used in the deliverable.

Abbreviation Description
AMQP Advanced Message Queuing Protocol
CPU Central Processing Unit
DSL Domain Specific Languages
eNB Evolved Node B
GPU Graphics Processing Unit
HDA Highly Distributed Applications
MEC Mobile Edge Computing
PNP ProActive Network Protocol
REST Representational State Transfer
SCP Secure copy protocol

TOSCA
Topology and Orchestration Specification for Cloud
Applications

UAV Unmanned Areal Vehicle
UML Unified Modelling Language
VM Virtual Machine
XMI XML Metadata Interchange
XML Extensible Markup Language

2018 © Copyright lies with the respective authors and their institutions.

6

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

1.Executive Summary

This deliverable reports on the work performed under the task 6.2 (PrEstoCloud
detailed architecture design). The main objective was to design the detailed
architecture of the PrEstoCloud platform.

This document is the continuation of the work reported in the deliverable D2.3, where
the initial architecture and the interfaces between the components were defined. This
work was focused on the analysis and refinement of every possible interaction in the
system architecture. Special attention was given to the communication with the Broker
(message-oriented middleware).

The architecture represents a distributred event driven architecture, enabling modern
Edge-Cloud processing pipelines. The main goal of the deliverable was to document
the details of the functionalities and the communication between all components,
driven by the scenarios defined in the deliverable D2.3.

One of the main challenges was the definition of a proper structure of the topics that
will be used as the structure for the exchange of the data over the broker (in a pub-sub
oriented way). This task was especially complex due to a need for defining a minimal
but complete set of topics that will cover different monitoring (from the edge and
cloud infrastructure) and data processing requirements.

The main outcome is the detailed architecture that serves as the basis for the
development of the integrated system. All interfaces are clearly defined and
documented. Moreover, this document should be seen as an evolution of D2.3,
whereas the information related to the description of the components areprovided in
D2.3 in a complete form.

The requirements are refined based on the progress in the development of the
planned technology. One of the most important open issues is the compliance with
GDPR.

The work was performed in a very close and intensive communication between all
technical and use case partners, intending to clarify the smallest details in the
proposed interfaces. There were around ten iterations of the architecture until all
requirements were satisfied.

The results of this work have been already used in the integration activities in the
scope of WP6.

2018 © Copyright lies with the respective authors and their institutions.

7

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2.Introduction

2.1 Scope
This document is the continuation of the work reported in the deliverable D2.3, where
the initial architecture and the interfaces between the components were presented.
The work was focused on the analysis and refinement of every possible interaction in
the system architecture. Special attention was given to the communication with the
Broker (message-oriented middleware)

The architecture represents a distributed event driven architecture, enabling modern
Edge-Cloud processing pipelines. The main goal of the deliverable was to document
the details of the functionalities and the communication between all components,
driven by the scenarios defined in the deliverable D2.3.

This document should be seen as an evolution of D2.3, whereas the information
related to the description of the components is provided in D2.3 in a complete form.
Moreover, particular components are elaborated in corresponding deliverables, which
reported the work in WP3-5.

The main outcome is the detailed architecture that serves as the basis for the
development of the integrated system. All interfaces are clearly defined and
documented.

Beside D2.3, this deliverable is strongly influenced by the other activities related to
the development of the system and use cases, esp.:

- D2.2 that provides the list of requirements for the development of the system
- D7.2 that provides pilots and validation plan.

We also analysed the validity of the requirements based on the progress in the
development of the particular components.

This work will be used (and continued) in the work in the context of the work package
WP6, which is related to the integration activities.

2.2 Relation to PrEstoCloud Tasks
This deliverable reports on the work performed under the task 6.2 (PrEstoCloud
detailed architecture design), which main objective was to design the detailed
architecture of the PrEstoCloud platform.

2.3 Structure
The document is structured in the following way:

 In Section 3 we provide the update of the architecture and detailed the
interfaces between components.

 In Section 4 we provide an update of the requirements based on the
technological development.

 Section 5 describes our approach for the technical integration and some details
related to the integration planning.

 Section 6 contains concluding remarks.

The deliverable includes several appendices to provide more details about some
components and the use cases.

2018 © Copyright lies with the respective authors and their institutions.

8

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

3.PrEstoCloud Integrated Framework Architecture

3.1 The PrEstoCloud Platform
In this subsection we present the updated architecture, which will serve as the basis
for the development of the integrated prototype. In deliverable D2.3 we provided the
initial architecture, illustrated in Figure 1 in order to enable understanding the changes
made in the scope of this deliverable (cf. Figure 2).

Figure 1: PrEstoCloud Initial Conceptual Architecture (D2.3)

2018 © Copyright lies with the respective authors and their institutions.

9

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Figure 2: PrEstoCloud Integrated Framework Architecture

By comparing two architectures in details, it becomes clear that the initial architecture
was complete regarding the components (position and nature), but that the
interactions between components are refined and expanded in order to enable better
understanding of the data flow and to support a better preparation of the integration
tasks. Indeed, there was only one slight change in the placement of one component
(Mobile Context Analyzer is not anymore placed within Situation Detection
Mechanism).

This shows that our initial analysis performed in the scope of D2.3 resulted in a very
sound architecture that furthermore indicates a well-understanding of the system and
the role of particular components from an early phase in the system development.
This is the reason for not repeating the description of the components in this
deliverable (complete information is provided in D2.3).

Despite this positive experience, there was a huge effort required by all partners in
order to provide a full integration picture, i.e. to analyse, understand, define and agree
on every interaction in the system. There were around ten iterations of the interaction
interfaces until all requirements were satisfied.

We argue that the detailed architecture presented in Figure 2 represents a very sound
basis for an efficient development of the integrated system. Indeed, the architecture
has been already used in the preparation of M18 prototype.

3.2 Detailed Description of the Components
As already mentioned, this information is provided in D2.3 “Requirements for the
PrEstoCloud platform” in a complete form. In order to enable an easier understanding
of the rest of this section, in the following table we provide the list of components.

Component Responsible
Partner

Layer

Workload Predictor NISSATECH MetaManagement

Mobile Context Analyzer ICCS MetaManagement

Situation Detection Mechanism ICCS MetaManagement

Application Fragmentation &
Deployment Recommender ICCS

ICCS MetaManagement

Resources Adaptation Recommender ICCS MetaManagement

Autonomic Data Intensive Application
Manager

ACTIVEEON Control

Autonomic Resource Manager ACTIVEEON Control

Application Placement & Scheduling
Controller

CNRS Control

Security Enforcement Mechanism UBITECH Control

Edge On/Offloading Server JSI Control

Communication and Message Broker NISSATECH Cloud-Edge

2018 © Copyright lies with the respective authors and their institutions.

10

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Communication

Spatio-Temporal Processing Library UBITECH Cloud-Edge
Communication

Inter-Site Network Virtualization CNRS Cloud-Edge
Communication

On/Offloading Agents JSI Cloud-Edge
Communication

3.3 Detailed Description of the Interfaces
This section gathers information about the interfaces required for the implementation
of the integrated solution by defining the communication between the components
developed in WP2-3-4-5.
The following subsections describe these interfaces (organized per activity) by
detailing the following information:
 Description: describes the purpose of the interface.
 Component providing the interface: describes the component that is offering

the described interface.
 Consumer components: describes the components that are using the described

interface.
 Type of interface: REST, XML-RPC, GUI, Java API etc.
 Input data: describes data that is required by the described interface (e.g.:

Methods or Endpoints, values and parameters of the interface)
 Output data: describes the data that is returned by the described interface (e.g.:

the returned data of methods or REST call)
 Constraints: Any security or authentication related topics regarding this interface,

specifically the need to use a secure transfer protocol. Also, any other constraints
(e.g. specific prerequisites, data-types, encoding, transfer rates) which apply to the
interface.

 State: Synchronous/Asynchronous, Stream
 Responsibilities: Partner that is responsible for the implementation and usage of

the interface

3.3.1 Interfaces of the Meta-management Layer Components

SubscribeToEvents and ProvidePredictions Interface (Workload
Predictor and Communication & Message Broker interface)

SubscribeToEvents and Provide Predictions

Description This interface allows Workload Predictor to receive monitoring
data from cloud and edge devices, and provide other
components with workload predictions for specific device.

2018 © Copyright lies with the respective authors and their institutions.

11

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Component
providing the
interface

Communication & Message Broker

Consumer
components or
External
Entities

Workload Predictor

Type of
Interface

AMQP

State Asynchronous

Input data /
Output Data

Methods or endpoints of the interface Paramet
ers of the
method

Return
Values
of the
method

monitoring.<group_id>.<device_type>.
<device_id>

-

JSON-
formatte
d string
with
values of
attribute
s and
timesta
mp

prediction.<device_type>.<device_id>.
<attribute>

JSON-
formatted
string for
any
predicted
attribute
relevant
for a
specific
applicatio
n

-

Constraints -

UML
Component/Seq
uence Diagram

Responsibilities Nissatech

SubscribeToEvents and PublishSituations Interface (Situation
Detection Mechanism – Communication & Message Broker)

SubscribeToEvents and PublishSituations Interface

2018 © Copyright lies with the respective authors and their institutions.

12

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Description The interface allows the Situation Detection Mechanism to
receive monitoring events from cloud and edge devices and
publishes situations that may trigger reconfigurations.

Component
providing the
interface

Communications & Message Broker

Consumer
components or
External
Entities

Situation Detection Mechanism

Type of
Interface

AMQP

State Asynchronous

Input data /
Output Data

Methods or endpoints of the interface Paramet
ers of
the
method

Return
Values
of the
method

monitoring.<group_id>.<device_type>.
<device_id>

-

JSON-
formatted
string
with
values of
attributes
and
timestam
p

deployment.ack
-

String
(tosca_id)

prediction.<device_type>.<device_id>.
<attribute>

-

JSON-
formatted
string for
any
predicted
attribute
relevant
for a
specific
applicatio
n

Other Cloud/Edge resource-Level metrics - The
indicative
list of
events
provided
above
can be
extended
according
to
PrEstoClo
ud

2018 © Copyright lies with the respective authors and their institutions.

13

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

adopters
needs
(e.g. Disk
read/writ
e, IPv6
traffic,
etc)

Application-Level metrics

-

Relevant
to
applicatio
n
monitorin
g data
(e.g.
Response
Time, MB
of
Transcod
ed Video
per
second
etc.)

situation.<event_pattern_name> JSON-
formatte
d string
with
value
and
timestam
p

-

Constraints Monitoring sensors (e.g. Netdata Monitoring and Metrics
Collector) for producing relevant events under the event topics
mentioned above should be deployed (in advance) on Cloud and
Edge resources

UML
Component/Seq
uence Diagram

Responsibilities ICCS, Nissatech

SubscribeToEvents Interface (Mobile Context Analyzer –
Communication & Message Broker)

SubscribeToEvents Interface

2018 © Copyright lies with the respective authors and their institutions.

14

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Description The interface allows the Mobile Context Analyzer to retrieve the
monitoring data from cloud and edge devices in order to derive
their context.

Component
providing the
interface

Communication & Message Broker

Consumer
components or
External
Entities

Mobile Context Analyzer

Type of
Interface

AMQP

State Asynchronous

Input data /
Output Data

Methods or endpoints of the interface Paramet
ers of
the
method

Return
Values of
the
method

monitoring.<group_id>.<device_type>.
<device_id>

-

JSON-
formatted
string
with
values of
attributes
and
timestam
p

Other Cloud/Edge resource-Level metrics

-

The
indicative
list of
events
provided
above
can be
extended
according
to
PrEstoClo
ud
adopters
needs
(e.g. Disk
read/writ
e, IPv6
traffic,
etc)

Application-Level metrics - Relevant
to
applicatio
n
monitorin
g data
(e.g.

2018 © Copyright lies with the respective authors and their institutions.

15

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Response
Time, MB
of
Transcod
ed Video
per
second
etc.)

Constraints The Communication & Message Broker should make sure that
even in cases where the connectivity is temporarily lost, the
monitoring data is queued and delivered once the connectivity
is restored.

UML
Component/Seq
uence Diagram

Responsibilities ICCS, Nissatech

ProvideEdgeContext & RequestEdgeContext Interface (Mobile Context
Analyzer – Resources Adaptation Recommender)

ProvideEdgeContext Interface

Description The interface allows the Resources Adaptation Recommender to
retrieve the derived context of edge devices when this is needed.

Component
providing
the interface

Mobile Context Analyzer

Consumer
components
or External
Entities

Resources Adaptation Recommender

Type of
Interface

REST

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Paramet
ers of the
method

Return Values of the
method

edgedevice/context/bat
tery

UAV_id JSON-formatted string that
reports on the battery
percentage expected in the
next 5 minutes.

Status codes:

200: Successfully transmitted

2018 © Copyright lies with the respective authors and their institutions.

16

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

the context data

400: Unsuccessfully tried to
send the context data

edgedevice/context/attr
ibute

-

JSON-formatted string for any
other contextual attribute
relevant for a specific
application (e.g. density of
edge devices in a certain
area)

Status codes:

200: Successfully transmitted
the context data

400: Unsuccessfully tried to
send the context data

Constraints Relevant monitoring data should have already delivered to the
Mobile Context Analyzer

UML
Sequence
Diagram

Responsibilit
ies

ICCS

AnnounceNewDeploymentRecom Interface (Communication & Message
Broker – Application Fragmentation & Deployment Recommender)

AnnounceNewDeploymentRecom Interface

Description The interface allows the Application Fragmentation & Deployment
Recommender to notify the Application Placement & Scheduling
Controller that a new type-level TOSCA archive has been stored to
the repository.

Component
providing
the interface

Communication & Message Broker

Consumer
components
or External
Entities

Application Fragmentation & Deployment Recommender

Type of
Interface

AMQP

State Asynchronous

2018 © Copyright lies with the respective authors and their institutions.

17

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the method Return
Values of
the
method

deployment.req JSON-formatted string with values
of tosca_id and old_tosca_id

-

Constraints -

UML
Sequence
Diagram

Responsibili
ties

ICCS, Nissatech

Requirements & Code Annotations Interface (Resources Adaptation
Recommender, Application Fragmentation & Deployment

Recommender - User Interface)
Requirements & Code Annotations Interface

Description The interface allows the User to send Code annotations and/or
annotation files which will guide the partitioning of the application
and the deployment of the fragments.

Component
providing
the
interface

Application Fragmentation & Deployment Recommender,

Resources Adaptation Recommender

Consumer
components
or External
Entities

User Interface

Type of
Interface

REST

State Synchronous

Input data /
Output Data

Methods or endpoints of
the interface

Parameters
of the method

Return Values of
the method

presto_events/policy_file_upl
oaded

policy file Status codes:

200: Successfully
transmitted the
policy file

400: Unsuccessfully
tried to send the
policy file

2018 © Copyright lies with the respective authors and their institutions.

18

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

presto_events/
requirements_uploaded

Code_annotati
ons,
annotations_fil
e

Status codes:

201: Successfully
transmitted the
annotations file /
Code annotations

401: Unsuccessfully
tried to send the
annotations file /
Code annotations

Constraints -

UML
Sequence
Diagram

Responsibili
ties

ICCS

SubscribeToEvents & AnnounceReconfigRecom Interface (Resources
Adaptation Recommender – Communication & Message Broker)

SubscribeToEvents & AnnounceReconfigRecom Interface

Description The interface allows the Resources Adaptation Recommender to
notify the Application Placement & Scheduling Controller for
reconfiguration opportunities (when a new type-level TOSCA
archive is uploaded) and receive information for situations
requiring adaptation.

Component
providing the
interface

Communication & Message Broker

2018 © Copyright lies with the respective authors and their institutions.

19

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Consumer
components or
External
Entities

Resources Adaptation Recommender

Type of
Interface

AMQP

State Asynchronous

Input data /
Output Data

Methods or endpoints of the
interface

Paramete
rs of the
method

Return
Values
of the
method

deployment.req JSON-
formatted
string with
values of
tosca_id
and
old_tosca_
id

-

situation.<event_pattern_name>

-

JSON-
formatte
d string
with
value
and
timestam
p

prediction.<device_type>.<device_id>.
<attribute>

-

JSON-
formatte
d string
for any
predicted
attribute
relevant
for a
specific
applicati
on

Constraints -

UML
Component/Seq
uence Diagram

Responsibilities ICCS, Nissatech

2018 © Copyright lies with the respective authors and their institutions.

20

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

21

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Diagrams
Following the details of the interfaces, we provide, below, an updated component
diagram (in comparison to the one provided D2.3) that depicts the interfaces used in
the PrEstoCloud Meta-Management Layer. We note that the
ProvideReconfigTypeLevelTosca and ProvideTypeLevelTosca interfaces refer to the
communication to the Cloud and Edge Resources Repository of the Control layer.

Figure 3: Meta-Management Layer Component diagram

In analogous manner, we have updated the UML sequence diagram provided D2.3 that
depicts the communication sequence and message exchange in the PrEstoCloud Meta-
Management Layer.

2018 © Copyright lies with the respective authors and their institutions.

22

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Figure 4: Meta-Management Layer Sequence diagram

3.3.2 Interfaces of the Control Layer Components

NFV Deployment Interface (Autonomic Data Intensive Application
Manager - Security Enforcement Mechanism)

NFV Deployment interface

Description The interface allows the Security Enforcement Mechanism to
interracts with the Autonomic Data Intensive Application Manager.
The interface is used to deploy specific resources (firewall, NIDS,
etc.) into PrEstoCloud network overlay in order to take additional
security measures.

Component
providing the

Autonomic Data Intensive Application Manager

2018 © Copyright lies with the respective authors and their institutions.

23

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

interface

Consumer
components
or External
Entities

Security Enforcement Mechanism

Type of
Interface

REST

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the
method

Return Values of
the method

/
submit/deploySecurit
yVM

Cloud, region, and
type of the security
VM to acquire.

IP of the deployed
security VM

Constraints VM templates that contain the appropriate VNF functionalities must
exist already

UML
Sequence
Diagram

Responsibiliti
es

ActiveEon, UBITECH

NewDeploymentorReconfiguration Interface (Edge On/Offloading
Server - Autonomic Data Intensive Application Manager)

NewDeploymentorReconfiguration Interface

Description The interface allows the Autonomic Data Intensive Application
Manager to send requests which are new deployment or
reconfiguration instructions issued for applications running on
edge resources.

Component
providing the
interface

Edge On/Offloading Server

Consumer
components
or External
Entities

Autonomic Data Intensive Application Manager

Type of
Interface

RESTful API (Application Program Interface)

2018 © Copyright lies with the respective authors and their institutions.

24

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the
method

Return Values of
the method

Java Socket API Type of request (new
deployment or
reconfiguration),
service name
(container name),
number of container
instances, place of
deployment,
application-specific
inputs, etc.

500: Code of success

501: Code of failure

Constraints None

UML
Sequence
Diagram

Responsibiliti
es

JSI

NodeRegistration Interface (Edge On/Offloading Server - On/Offloading
Client)

NodeRegistration Interface

Description The interface allows On/Offloading Clients to send requests for the
registration of edge nodes.

Component
providing the
interface

Edge On/Offloading Server

Consumer
components
or External
Entities

On/Offloading Client

Type of
Interface

RESTful API (Application Program Interface)

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the
method

Return Values
of the method

Java Socket API Operating System, CPU
Number, Architechture
such as x86_64, Total

100: Code of
success

2018 © Copyright lies with the respective authors and their institutions.

25

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

memory, Boot Time, Total
Disk, etc.

101: Code of
failure

Constraints None

UML
Sequence
Diagram

Responsibiliti
es

JSI

SubscribeDeploymentRequests Interface (Communication & Message
Broker - Autonomic Data Intensive Application Manager)

SubscribeDeploymentRequests Interface

Description The interface allows the Autonomic Data Intensive Application
Manager to be notified when a new deployment/reconfiguration
must be performed.

Component
providing the
interface

Communication & Message Broker

Consumer
components
or External
Entities

Autonomic Data Intensive Application Manager

Type of
Interface

AMQP

State Asynchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Paramete
rs of the
method

Return Values of the method

deployment.req
-

JSON-formatted string with value
of tosca_id and old_tosca_id

Constraints None

UML
Sequence
Diagram

Responsibiliti
es

ActiveEon

2018 © Copyright lies with the respective authors and their institutions.

26

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

AnnounceTerminatedDeployment Interface (Communication & Message
Broker - Autonomic Data Intensive Application Manager)

AnnounceTerminatedDeployment Interface

Description The interface allows the Autonomic Data Intensive Application
Manager to notify the Meta-Management layer that the
deployment status is now terminated and that therefore a
complete TOSCA document has been stored to the repository.

Component
providing the
interface

Communication & Message Broker

Consumer
components
or External
Entities

Autonomic Data Intensive Application Manager

Type of
Interface

AMQP

State Asynchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the
method

Return Values of
the method

deployment.ack String (tosca_id) -

Constraints The TOSCA archive must be uploaded on the repository.

UML
Sequence
Diagram

Responsibiliti
es

ActiveEon

ManagingCloudNodes Interface (Autonomic Resource Manager -
Autonomic Data Intensive Application Manager)

ManagingCloudNodes Interface

Description The interface allows the Autonomic Data Intensive Application
Manager to interract with the Autonomic Resource Manager. The
interface is used to configure and trigger the creation/deletion of
cloud resources and to retrieve the status of deploying & acquired
resources.

Component Autonomic Resource Manager

2018 © Copyright lies with the respective authors and their institutions.

27

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

providing
the interface

Consumer
components
or External
Entities

Autonomic Data Intensive Application Manager

Type of
Interface

Java connector

State Synchronous

Input data /
Output Data

Methods or endpoints of the
interface

Parameters
of the
method

Return
Values of
the method

acquireNodes Cloud,
region, and
type of the
VM/node to
acquire.

Identifiers
of the
deploying
nodes

removeNodes Identifiers of
the nodes to
remove.

Identifiers
of the
nodes
actually
removed

Constraints None

UML
Sequence
Diagram

Responsibilit
ies

ActiveEon

VMsRegistration Interface (Autonomic Resource Manager - Cloud
Application)

VMsRegistration Interface

Description The interface allows the deployed cloud resources (VMs) to register
themselves with the Autonomic Resource Manager. The interface is
used to acquire new cloud resources (through the ProActive agent
installed in the VMs) in order to make them accessible by the
Autonomic Data Intensive Application Manager (remote tasks
execution).

Component Autonomic Resource Manager

2018 © Copyright lies with the respective authors and their institutions.

28

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

providing the
interface

Consumer
components
or External
Entities

Deployed cloud resources (VM)

Type of
Interface

PNP (ProActive Network Protocol) endpoint.

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the method Return Values
of the method

registerNode PNP url of the node to
register

Success: Open
bidirectional
communication

Failure: Send
error message
and close
communication

Constraints None

UML
Sequence
Diagram

Success: Failure:

Responsibiliti
es

ActiveEon

PlacementManagment (Application Placement & scheduling controller
- Autonomic Data Intensive Application Manager)

PlacementManagment Interface

Description The interface allows the Autonomic Data Intensive Application
Manager to interract with the Application Placement & scheduling
controller. The interface is used to specify the model and
constraints from the parsed TOSCA files, start the constraints
solver, and retrieve the reconfiguration actions to execute in
order to reach the desired placement of resources.

Component
providing the
interface

Application Placement & scheduling controller

Consumer
components or
External

Autonomic Data Intensive Application Manager

2018 © Copyright lies with the respective authors and their institutions.

29

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Entities

Type of
Interface

Java connector

State Synchronous

Input data /
Output Data

Methods or
endpoints of
the interface

Parameters of the
method

Return Values of
the method

setup Sets of resources and
constraints as described in
the TOSCA files

A boolean that
indicates the
correctness of the
model

solve An objective (extracted
from TOSCA metadata)
represented by a variable
that must be maximized or
minimized

Sequence of actions
to perform in order
to reach the desired
placement of
resources.

Constraints None

UML Sequence
Diagram

Responsibilitie
s

ActiveEon, CNRS

ProvideAndGetTypeLevelTosca Interface (Cloud & Edge Resources
Repository - Autonomic Data Intensive Application Manager, Resources

Adaptation Recommender, Application Fragmentation & Deployment
Recommender

ProvideAndGetTypeLevelTosca Interface

Description The interface is used to share TOSCA files and archives between
components of both the Meta-Management Layer and the
Control Layer.

Component
providing the
interface

Cloud & Edge Resources Repository

2018 © Copyright lies with the respective authors and their institutions.

30

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Consumer
components or
External
Entities

Autonomic Data Intensive Application Manager

Resources Adaptation Recommender

Application Fragmentation & Deployment Recommender

Type of
Interface

Shared storage based on SSH. The components will use SCP
(“secure copy”) to download/upload files from/to the repository
through encrypted network connections.

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the
method

Return Values of the
method

Download TOSCA archive
name and version
to retrieve.

Success:

Transfert
acknowlegment.

Failure:

Cause of transfert
error.

upload TOSCA archive
name and version
to store.

Success:

Transfert
acknowlegment.

Failure:

Cause of transfert
error.

Constraints None

UML Sequence
Diagram

Autonomic Data Intensive Application Manager:

Resource Adaptation Recommender:

2018 © Copyright lies with the respective authors and their institutions.

31

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Application Fragmentation & Deployment Recommender:

Responsibilities ActiveEon, ICCS

SubscribeforSecurityRelatedMonitoringEvents Interface (Security
Enforcement Mechanism – Communication & Message Broker)

SubscribeforSecurityRelatedMonitoringEvents Interface

Description The interface allows the Security Enforcement Mechanism to
retrieve monitoring data from cloud and edge devices in order to
identify possible situations (e.g.: a DDOS attack) that suggest
the enforcement of a security mitigation action.

Component
providing the
interface

Communication & Message Broker

Consumer
components or
External
Entities

Security Enforcement Mechanism

Type of
Interface

AMQP

State Asynchronous

2018 © Copyright lies with the respective authors and their institutions.

32

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Input data /
Output Data

Methods or endpoints of the interface Paramete
rs of the
method

Return
Values
of the
method

monitoring.<group_id>.<device_type>.
<device_id>

- JSON-
formatte
d string
with
Values of
attribute
s and
timestam
p

Constraints The Communication & Message Broker should make sure that
even in cases where the connectivity is temporarily lost, the
monitoring data is queued and delivered once the connectivity is
restored.

UML
Component/Seq
uence Diagram

Responsibilities Ubitech, Nissatech

Passive Monitoring Interface (Communication & Message Broker -
Autonomic Data Intensive Application Manager)

Passive Monitoring Interface

Description This interface allows the Inter-site Network Virtualization
component to publish (passive) monitoring information to the
control layer

Component
providing the
interface

Communication & Message Broker

Consumer
components or
External
Entities

Autonomic Data Intensive Application Manager

Type of
Interface

AMQP

State Asynchronous

Input data /
Output Data

Methods or endpoints of the interface Paramet
ers of the
method

Return
Values
of the
method

2018 © Copyright lies with the respective authors and their institutions.

33

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

monitoring.<group_id>.<device_type>.
<device_id>

-

JSON-
formatte
d string
with
values of
attribute
s and
timesta
mp

Constraints None

UML
Component/Seq
uence Diagram

Responsibilities CNRS

2018 © Copyright lies with the respective authors and their institutions.

34

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Diagrams
Following the details of the interfaces, we provide, below, an updated component
diagram (in comparison to the one provided D2.3) that depicts the interfaces used in
the PrEstoCloud Control Layer.

Figure 5: Control Layer Component diagram

In analogous manner, we have updated the UML sequence diagram provided D2.3 that
depicts the communication sequence and message exchange in the PrEstoCloud Meta-
Management Layer.

2018 © Copyright lies with the respective authors and their institutions.

35

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Figure 6: Cloud-Edge Layer Component and Sequence diagram

3.3.3 Interfaces of the Cloud-Edge Communication Layer

Deployment Interface (Inter-site Network Virtualization - Autonomic
Data Intensive Application Manager)

Deployment Interface

Description This interface allows the Autonomic Data Intensive Application
Manager to receive the necessary network parameters for
configuring a deployment site, and for deploying the VPN-Gateway
subcomponent

Component Inter-site Network Virtualization

2018 © Copyright lies with the respective authors and their institutions.

36

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

providing
the interface

Consumer
components
or External
Entities

Autonomic Data Intensive Application Manager

Type of
Interface

Custom workflow within the Autonomic Data Intensive Application
Manager

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Paramete
rs of the
method

Return Values of the method

Cloud
Configuration

IaaS
platform

Configuration to be applied to the
IaaS platform so as to create an
isolated VNet: IP address range,
specific configuration commands
and parameters for IaaS platform
API, topology construct

Gateway
Initialization

ANSIBLE instructions to properly
setup the VPN Gateway VM

Constraints None

UML
Sequence
Diagram

Responsibilit
ies

CNRS, ActiveEon

Passive Monitoring Interface (Communication & Message Broker -
Inter-site Network Virtualization)

Passive Monitoring Interface

Description This interface allows the Inter-site Network Virtualization component
to publish (passive) monitoring information to the control layer

Component
providing
the
interface

Communication & Message Broker

Consumer
component
s or
External
Entities

Inter-site Network Virtualization

Type of AMQP

2018 © Copyright lies with the respective authors and their institutions.

37

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Interface

State Asynchronous

Input data /
Output
Data

Methods or endpoints of the interface Parameters
of the method

Return
Values of
the
method

monitoring.<group_id>.<device_type>.
<device_id>

JSON-
formatted
string with
values of
attributes and
timestamp

Constraints None

UML
Sequence
Diagram

Responsibil
ities

CNRS

ContainerControl Interface(On/Offloading Client - Edge On/Offloading
Server)

ContainerControl Interface

Description The interface allows the Edge On/Offloading Server to send
requests (e.g. start or stop requests) in order to launch or
terminate container instances.

Component
providing the
interface

On/Offloading Client

Consumer
components
or External
Entities

Edge On/Offloading Server

Type of
Interface

API (Application Program Interface)

State Synchronous

Input data /
Output Data

Methods or
endpoints of the
interface

Parameters of the
method

Return Values of
the method

Java Socket API start or stop request
for container, IP to run

200: Code of
success in start a

2018 © Copyright lies with the respective authors and their institutions.

38

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

the container, number
of ports to be defined,
application-specific
inputs, etc.

container instance

201: Code of failure
in start a container
instance

300: Code of
success in stop a
container instance

301: Code of failure
in stop a container
instance

Constraints The application may have different inputs depending on the
service type. These inputs are defined by application developers
determined as parameters of the API. Moreover, the order of
parameters of the method is important.

UML
Sequence
Diagram

Responsibiliti
es

JSI

Appendix B contains more details about this part.

2018 © Copyright lies with the respective authors and their institutions.

39

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Diagrams
The following figure shows the sequence diagram for two procedures: (i) Registration
of edge node and (ii) New deployment or reconfiguration of the application. These two
procedures were explained before through the APIs exposed by both the Edge
On/Offloading Server and the On/Offloading Client. The registration of edge node starts
from the On/Offloading Client, and the new deployment or reconfiguration of the
application starts from the Autonomic Data Intensive Application Manager.

Figure 7: Sequence diagram for (i) Registration of edge node and (ii) New
deployment or reconfiguration of the application.

3.3.4 Communication through the Broker
The nature and role of the Broker is described in D3.1 Communication Broker:
Iteration 1.

Appendix A contains more details about the Broker (not presented in D3.1), which are
outcomes from an intensive work on an easier install and configuration of the broker.

For each component that will communicate through the Broker we need:

 Topic (name)
 Publisher and subscriber
 Used protocols
 JSON (or similar) description of the format
 Description of the messages to be sent
 Any information/constraints related to the data transfer, like frequency of

sending (msec) or content (KB/event)

Below we show is an indicative list of topics that may be extended as the integration
of PrestoCloud components progresses. Also, parameters and units in payload can be
changed.

2018 © Copyright lies with the respective authors and their institutions.

40

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

monitoring.<group_id>.<device_type>.<device_id>

Topic Name monitoring.<group_id>.<device_type>.<device_id>

Description This is a topic which describes the NetData monitoring of a
cloud/edge node.

Component
publishing
under this
topic and
protocol

Inter-Site Network Virtualization, Cloud VM’s AMQP

Edge devices MQTT

Components
subscribing for
this topic and
protocol

Workload Predictor, Situation Detection Mechanism,
Mobile Context Analyzer, Security Enforcement
Mechanism, Autonomic Data Intensive Application
Manager

AMQP

Payload
structure

disk-reads: <value>

disk-writes: <value>

network-received: <value>

network-sent: <value>

cpu-system: <value>

cpu-user: <value>

cpu-iowait: <value>

ram-free: <value>

timestamp: <value>

Example disk-reads: 0.2

disk-writes: 0.2

network-received: 1

network-sent: 1

cpu-system: 10

cpu-user: 30

cpu-iowait: 2

ram-free: 2

timestamp: 1527023456

prediction.<device_type>.<device_id>.<attribute>

Topic Name prediction.<device_type>.<device_id>.disk-reads

2018 © Copyright lies with the respective authors and their institutions.

41

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Description This is a topic which describes the prediction of average read
MB/s from disk in that moment from a cloud/edge node.

Component
publishing
under this
topic and
protocol

Workload Predictor AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

Payload
structure

disk-reads: <value>

timestamp: <value>

Example disk-reads: 0.2

timestamp: 1527023456

Topic Name prediction.<device_type>.<device_id>.disk-writes

Description This is a topic which describes the prediction of average written
MB/s to disk in that moment on a cloud/edge node.

Component
publishing
under this
topic and
protocol

Workload Predictor AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

Payload
structure

disk-writes: <value>

timestamp: <value>

Example disk-writes: 0.2

timestamp: 1527023456

Topic Name prediction.<device_type>.<device_id>.network-received

Description This is a topic which describes the prediction of received Mbit/s on
the network in that moment on a cloud/edge node.

Component
publishing
under this
topic and

Workload Predictor AMQP

2018 © Copyright lies with the respective authors and their institutions.

42

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

protocol

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

Payload
structure

network-received: <value>

timestamp: <value>

Example network-received: 1

timestamp: 1527023456

Topic Name prediction.<device_type>.<device_id>.network-sent

Description This is a topic which describes the prediction of sent Mbit/s to the
network in that moment from a cloud/edge node.

Component
publishing
under this
topic and
protocol

Workload Predictor AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

Payload
structure

network-sent: <value>

timestamp: <value>

Example network-sent: 1

timestamp: 1527023456

Topic Name prediction.<device_type>.<device_id>.cpu-system

Description This is a topic which describes the prediction of percentage usage
of CPU by system in that moment on a cloud/edge node.

Component
publishing
under this
topic and
protocol

Workload Predictor AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

2018 © Copyright lies with the respective authors and their institutions.

43

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Payload
structure

cpu-system: <value>

timestamp: <value>

Example cpu-system: 10

timestamp: 1527023456

Topic Name prediction.<device_type>.<device_id>.cpu-user

Description This is a topic which describes the prediction of percentage usage
of CPU by user in that moment on a cloud/edge node.

Component
publishing
under this
topic and
protocol

Workload Predictor AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

Payload
structure

cpu-user: <value>

timestamp: <value>

Example cpu-user: 30

timestamp: 1527023456

Topic Name prediction.<device_type>.<device_id>.cpu-iowait

Description This is a topic which describes the prediction of percentage usage
of CPU by I/O activities in that moment on a cloud/edge node.

Component
publishing
under this
topic and
protocol

Workload Predictor AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

Payload
structure

cpu-iowait: <value>

timestamp: <value>

Example cpu-iowait: 2

timestamp: 1527023456

2018 © Copyright lies with the respective authors and their institutions.

44

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Topic Name prediction.<device_type>.<device_id>.ram-free

Description This is a topic which describes the prediction of free RAM (GB) in
that moment on a cloud/edge node.

Component
publishing
under this
topic and
protocol

Workload Predictor AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism, Resources Adaptation
Recommender

AMQP

Payload
structure

ram-free: <value>

timestamp: <value>

Example ram-free: 2

timestamp: 1527023456

situation.<event_pattern_name topic>

Topic Name situation.high_cpu

Description This is a situation that denotes high CPU usage (e.g. >80%)
observed on a cloud or edge resource

Component
publishing
under this
topic and
protocol

Situation Detection Mechanism AMQP

Components
subscribing for
this topic and
protocol

Resource Adaptation Recommender AMQP

Payload
structure

device_id: <value>

metric_value: <value>

timestamp: <value>

Example device_id: UAV_12345678

metric_value: 82

timestamp: 1526997880

2018 © Copyright lies with the respective authors and their institutions.

45

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Topic Name situation.high_ram

Description This is a situation that denotes high RAM usage (e.g. >80%)
observed on a cloud or edge resource

Component
publishing
under this
topic and
protocol

Situation Detection Mechanism AMQP

Components
subscribing for
this topic and
protocol

Resource Adaptation Recommender AMQP

Payload
structure

device_id: <value>

metric_value: <value>

timestamp: <value>

Example device_id: UAV_12345678

metric_value: 90

timestamp: 1527003160

Topic Name situation.low_network

Description This is a situation that denotes high Network usage (e.g. <10%)
observed on a cloud or edge resource

Component
publishing
under this
topic and
protocol

Situation Detection Mechanism AMQP

Components
subscribing for
this topic and
protocol

Resource Adaptation Recommender AMQP

Payload
structure

device_id: <value>

metric_value: <value>

timestamp: <value>

Example device_id: UAV_12453853

metric_value: 02

timestamp: 1527004160

deployment.req

2018 © Copyright lies with the respective authors and their institutions.

46

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Topic Name deployment.req

Description This is a topic which informs the Autonomic Placement &
Scheduling Controller or any other interested component that a
new type-level TOSCA file has been uploaded to the repository
and can be used to implement the instance-level TOSCA.

Component
publishing
under this
topic and
protocol

Application Fragmentation & Deployment
Recommender, Resources Adaptation Recommender

AMQP

Components
subscribing for
this topic and
protocol

Autonomic Data Intensive Application Manager AMQP

Payload
structure

tosca_id: <value>

old_tosca_id: <value>

timestamp: <value>

Example tosca_id: type_level-0000002.yaml

old_tosca_id: type_level-0000001.yaml

timestamp: 1527009252

deployment.ack

Topic Name deployment.ack

Description This is a topic which informs the Resources Adaptation
Recommender or any other interested component that the
deployment has been successfully carried out according to the
instance-level TOSCA stored in the repository.

Component
publishing
under this
topic and
protocol

Autonomic Data Intensive Application Manager AMQP

Components
subscribing for
this topic and
protocol

Situation Detection Mechanism AMQP

Payload
structure

deployment_id: <value>

timestamp: <value>

2018 © Copyright lies with the respective authors and their institutions.

47

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Example deployment_id: instance_level-0000001.yaml

timestamp: 1527009252

2018 © Copyright lies with the respective authors and their institutions.

48

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

4.Requirements Refinement

In deliverable D2.3 we provided a detailed mapping between the requirements
identified in D2.2 and the conceptual architecture.

Since the list and the position of components in the updated architecture is the same,
there was not a huge need for an update of the initial mapping.

However, there were a few changes related to the requirements:

1. Since the component Workload predictor has become the central component for
processing data from the Broker, it will be related also to processing monitoring
data and its management (requirement FR-4).

2. In addition, Workload predictor can be used for the set-up of the analytics (real-
time and batch processing, requirement FR-65).

3. An issue that must be resolved is GDPR (FR-13), so that we changed the priority
for this requirement in the “Must have”.

These changes have also an impact on the prioritization of the requirements. The
following figure illustrates the most important changes.

Figure 8: Update in the list of requirements

Further technical development will take into account these changes.

The most important is the compliance with GDPR. In the deliverable D7.11 we have
started already the analysis of the use cases from the GDPR point of view and these
findings will be used in the technical development.

2018 © Copyright lies with the respective authors and their institutions.

49

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

5.Technical Integration and Planning

5.1 Introduction
In order to implement the use cases of the project, separate installations will be
provided for each pilot. This approach is followed in order to optimize the platform
setup to each use case needs, to enhance security, and to reduce network traffic that
a centralized PrEstoCloud installation would add thus improving the latency and QoS of
the pilot services.

For this reason, we provide a high-level mapping of the components of the architecture
that will be deployed and integrated in each of the use cases. This mapping has been
provided in Appendix C – Technical integration in use cases. In the same time, in order
to make the initial integration and to be able to test the platfrom, we have also
created a sandbox infrastructure that is used for all component and integration tests
so far. The same infastructure and setup of the platform can allow us to create
prototypes of the platform that can be used for demonstration purposes and also as
initial setup for the use cases.

As explained in deliverable D2.3, PrEstoCloud’s conceptual architecture follows, on a
higher abstraction level, the self adaptivity pattern: Monitor Analyze Plan Execute
Knowledge [IBM05] (MAPE-K model; so called “architectural blueprint for autonomic
computing”, introduced by IBM). And as it was shown in the architecture diagram of
Figure 1 and in the explained integration approach, PrEstoCloud Platform consists of
different components responsible for separate jobs. Using the MAPE-K mapping,
PrEstoCloud includes components for a) monitoring the infrastructure and application,
b) process and analyse the monitored data, c) components that are responsible for
planning amd making decisions on the adaptation and d) components responsible for
the execution. Finally, e) specific parts of the platform are holding the knowledge in
terms. All these components are integrated both using direct communications
between components (Star architecture) and asynchronous, loosely-coupled
integration using a common message broker when it is needed.

In order to actually make the integration in a platform like PrEstoCloud that is
composed by many interconnecting components that are provided by different
partners, analysing only the interfaces among components is not enough, but further
agreement on technical and non-technical decisions has to be made. In this section we
will present how the integration actually takes place, at deployment, intefaces, code
and even knowledge perspectives.

Table 1. PrEstoCloud integration mechanisms

Integration Perspectives on PrEstoCloud
At Deployment Level Configuration of components’

deployment using Docker compose

Dedicated container registries using
GitLab

Sandbox for integration testing

At Interfaces Level Documentation of Interfaces

At Code Level Dedicated code repositories using
GitLab

At Knowledge Level Usage of Skype and Work Package

2018 © Copyright lies with the respective authors and their institutions.

50

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

specific lists

Dedicated folder for collaboration
on the shared repository of
consortium and GitLab for issues
management

5.2 Integration at Deployment Level
For the technical integration in PrEstoCloud we need many different components to be
deployed and communicate using dedicated interfaces or the common message
broker. For achieving this we are using Docker Compose1 files. This approach is
followed in order to allow easy installation and replication of the whole PrEstoCloud
platform, by providing a central way of defining and configuring services, while also
benefiting from the portability aspects of the Operating System virtualization
(containers).

5.2.1 Using Docker Compose for Integration
Docker Compose is a tool for defining and running multi-container Docker applications,
based on a YAML file that is used to configure application’s services. Then, with a
single command, all services can be created and started using the configuration file.
Following the approach doesn’t mean that all components of PrEstoCloud should be
containerized and deployed using Docker. Some services may still be provided from a
centralized point or through dedicated physical or virtual machines. What is managed
through Docker compose configuration file (and by respecting some development
guidelines) is the way that all components are possible to be deployed and
communicate.

In order to make the whole integration flow to work based on Docker Compose in an
autonomous and continuous way for PrEstoCloud, we will try to create Docker based
container images for the components developed, whenever this possible. In
comparison to virtual machine that needs to include infrastructure configuration and
the whole OS, the containers image is a lightweight, stand-alone, executable package
that includes everything needed to run a piece of software, including the code, a
runtime, libraries, environment variables, and configuration files. A container is a
runtime instance of an image—what the image becomes in memory when actually
executed. In comparison to a Virtual Machine (VM) that is completely isolated, a
container is partially isolated from the host environment, as it uses the kernel calls and
commands of the host OS, but accessing host files and ports is possible only if
configured to do so.

Images are created using Docker and are possible to be configured using Dockerfile. A
Dockerfile contains instructions on how to create the desired image based on pre-
existing images. More information regarding the creation process is provided in section
that follows.

The pre-existing images can be stored and retrieved from image repositories called
Docker registries. Such a Docker Registry is used for PrEstoCloud and is a stateless,
highly scalable server-side application that allows storing and distributing Docker
images. It works similar to Git, as collaborators can login and then push or pull the
images that they or other partners are creating.

The configuration of the multiple available components of the platform that are
communicating through the interfaces can be helped with Docker compose files,

1 https://docs.docker.com/compose

2018 © Copyright lies with the respective authors and their institutions.

51

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

through the usage of Environmental Variables for configuration. Most important
parameters that are usually needed for this action are service urls, ports or any other
information needed for the acknowledgment and configuration between services. With
environmental variables existing in each Docker compose based deployment, the
service developer shall utilize the available variables at code level in order to avoid
the hardcoding of parameters that make applications difficult to deploy and, in the
end, develop and test a project with many different partners in remote locations, like
PrEstoCloud.

First step for collaborative working was that each partner needs to join the
PrEstoCloud project page in GitLab2 that will be used for the hosting of private code
and container repositories, as well tools for the support of CI activities. For hosting
integration related material of the whole framework, as docker-compose.yml files or
the needed docker images3, a project called framework has been created.

5.2.2 Sandbox-based approach
In order to make the initial integration and to be able to test the platform, we have
also created a sandbox infrastructure that is used for all component and integration
tests so far. The same infrastructure and setup of the platform can allow us to create
prototypes of the platform that can be used for demonstration purposes and also as
initial setup for the use cases.

5.3 Integration at Interface Level
For the integration of the components and the better coordination of the development
of the interfaces, lengthy discussions have been made. Each partner is responsible to
provide the appropriate documentation for the interface usage and this in order to
allow the consumer of the interface to use it properly and inform when changes are
introduced in order to edit/adapt to changes.

The current version of the interfaces needed for the platform integration has been
agreed upon discussions of the partners (at whole consortium and mostly at bilateral
level) and are documented in this deliverable This mapping has been provided in Error:
Reference source not found.

Asynchronous Operations

For interfaces that need asynchronous operation mode for their communication, the
common message broker is used. The publish/subscribe (pub/sub) messaging pattern
is realized using destinations known as topics. Publishers send messages to the topic
and subscribers register to receive messages from the topic. Any messages sent to the
topic are automatically delivered to all subscribers. For more details the reader can
refer on section 3.3.4.

5.4 Code Level Integration
In the cases that multiple partners need to work on the same components, code level
integration is supported with a code repository that is available for all partners that
need to work together or to store their component’s code safety. The source code
repositories are available at: https://gitlab.com/prestocloud-project.

2 https://gitlab.com/prestocloud-project

3 registry.gitlab.com/prestocloud-project/framework

2018 © Copyright lies with the respective authors and their institutions.

52

https://gitlab.com/prestocloud-project

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Figure 9: PrEstoCloud project group in GitLab

5.5. Knowledge level integration
The last part to cover for the technical integration is the need for a collaboration
mechanism that allows partners that are working in distributed manner to collaborate.
This important parameter is often performed without setting strict rules, but in the
case of PrEstoCloud we tried to collect the shared knowledge in order to ease the
development and integration. Towards these directions the following steps have been
performed. Initially a skype group for PrEstoCloud has been created, and dedicated
channels for each work package have been created. Then, in order to achieve
integration planning goals, a document collecting all the details of the technical
integration, together with instructions and examples has been created and uploaded
to the common repository of the project. This document will be constantly updated
when needed. Finally, with GitLab it is also possible to create wiki pages for each of
the component in order to allow partners developing a component to provide the
needed information and instructions in a structured format. In the GitLab of the project
issues, enhancements and suggestions are stored by the partners, even per
component, thus allow the proper tracking of the development progress and status.

5.6 Integration Planning
Following the methodology presented above, internal artefacts produced by the
technical work packages (WP3-WP5) will be continuously integrated. In the same time,
we plan three major releases of the PrEstoCloud integrated platform for M20, M31 and
M36. The aim is to integrate the components into PrEstoCloud platform and instantiate
it for each use cases. Feedback and lessons learnt will be fed back to this integration
workpackage from WP7. As also described in deliverable D7.2, in PrEstoCloud we will
perform two cycles of technical and user evaluations during the project period, so the
development of the platform and its evaluation will be performed in parallel. The
results of the validation and the evaluation need to be fed back into the development
cycle, improving the user experience and detecting open issues. Therefore, after the

2018 © Copyright lies with the respective authors and their institutions.

53

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

evaluation will be performed, the resulting issues need to be discussed by the
consortium in order to be updated accordingly.

The first major release of PrEstoCloud will include the integration of the basic
components developed in the technical work packages. The goal is to present basic
capabilities integrated until M20. During the second iteration, the integrated version of
all the stable versions of the PrEstoCloud components developed in the technical work
packages will be released (M31). Feedback from the pilot-based evaluation (WP7 at
M26 and M34) will be also taken into account. Based on the last evaluation iteration
(M34), further enhancements or modifications will be provided in the final release of
the PrEstoCloud platform (M36). However, smaller iterations with changes on the
architectural design and the development will be used through the project duration.

5.6.1 Multi-Iteration/Release Plan
Based on the plan of having to three releases of PrEstoCloud framework, the
consortium had to make decisions regarding the specific functionalities that will be
supported on each release, in order to coordinate the development, iteration and
testing process. Meanwhile the integration between components has started to allow
the iterative implementation of the platform and to assure the delivery of the first
version in M20, in order to collect the feedback from the use cases by M26. It should
be emphasized that even earlier that this first version, by M18 a first set of component
and functionalities will be demonstrated to the use case partners in order to acquire
preliminary feedback. Then, on M31 an updated version of the platfrom will be
provided for extensive testing until M34. The final version of the integrated platform
will be delivered on M36 and will include all the individual functionalities per
components and extend the integration of the first version to support the
functionalities provided in the final version of the components.

To properly support this during development, we have created on the project GitLab
dedicated milestones in order to be able to plan and track the advancements on all
developed components and the integrated platform.

Figure 10: PrEstoCloud Milestones as part of the development and
integration plan

1st Platform Release
The first release of PrEstoCloud is due on M20. The goal is to complete the first cycle
of integration. The actual deadline is dictated by the deliverable D6.2 that will
document the platform status and provide installation and usage instructions. Also, in
Deliverable D6.2 a planning for the status of the components for the next releases will

2018 © Copyright lies with the respective authors and their institutions.

54

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

also be provided. As already stated, the first release will focus on the integration of the
basic components of the platform.

2nd Platform Release
As the development efforts for the workpackages WP3 to WP5 conclude by M30, the
second platform release will be provided on M31. It will include the full implementation
of the components in order to allow full testing and evaluation at the perspective of
the use cases until M34.

Final Version of the Platform
The final version of PrEstoCloud Framework will be delivered at the end of the project,
by M36. This version will be fully integrated and the documentation of this final version
of PrEstoCloud framework will be delivered, as part of deliverable D6.4. In this final
version of the platform, the feedback from the second evaluation period will be
incorporated in order to improve the platform.

2018 © Copyright lies with the respective authors and their institutions.

55

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

6.Conclusions
This deliverable is the continuation of the work reported in the deliverable D2.3, where
the initial architecture and the interfaces between the components were presented.
The work was focused on the analysis and refinement of every possible interaction in
the system architecture. Special attention was given to the communication with the
Broker (message-oriented middleware).

The architecture represents a distributred event driven architecture, enabling modern
Edge-Cloud processing pipelines. The main goal of the deliverable was to document
the details of the functionalities and the communication between all components,
driven by the scenarios defined in the deliverable D2.3.

One of the main efforts was in defining a proper structure of the topics that will be
used as the structure for the exchange of the data over the broker (in a pub-sub
oriented way). This task was especially complex due to a need for defining a minimal
but complete set of topics that will cover different monitoring (from the edge and
cloud infrastructure) and data processing requirements.

The main outcome is the detailed architecture that serves as the basis for the
development of the integrated system. All interfaces are clearly defined and
documented. Moreover, this document should be seen as an evolution of D2.3,
whereas the information related to the description of the components is provided in
D2.3 in a complete form.

The requirements are refined based on the progress in the development of the
planned technology. One of the most important open issues is the compliance with
GDPR.

This work will be used in the context of the work package WP6, which is related to the
integration activities.

2018 © Copyright lies with the respective authors and their institutions.

56

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

7.References

Bernardi, S., Merseguer, J., Petriu, D., (2013). Model-driven Dependability
Assessment of Software Systems. Springer, ISBN 978-3-642-39512-3.

ETSI, (2016). ETSI GS MEC 003: Mobile Edge Computing (MEC); Framework and
Reference Architecture V1.1.1, available online at:
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v0101
01p.pdf.

Gómez, A., Merseguer, J., Di Nitto, E., Tamburri, D., A., (2016). Towards a uml profile
for data intensive applications. In Proceedings of QUDOS’16, pages 18–23, New York,
NY, USA, 2016. ACM.

PrEstoCloud, (2017a). D7.1 – As-Is and To-Be Scenarios. Confidential deliverable,
available only for consortium members and Commission Services.

PrEstoCloud, (2017b). D2.3 – Requirements for the PrEstoCloud platform. Public
deliverable, available at: http://prestocloud-project.eu/new/deliverables/.

2018 © Copyright lies with the respective authors and their institutions.

57

http://prestocloud-project.eu/new/deliverables/
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/01.01.01_60/gs_MEC003v010101p.pdf

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Appendix A – Broker: additional instructions
related to the architecture

Since the Broker is a very important component for an efficient realization of the
proposed architecture, we provide in this appendix some additional information about:

- the organization / structure of the topics exchanged through the Broker;

- the guidelines how the Broker can be used.

A1. The structure of the topics
The following tables provide details how the interaction of other components is
supported through the Broker.

2018 © Copyright lies with the respective authors and their institutions.

58

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

2018 © Copyright lies with the respective authors and their institutions.

59

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

A2. Broker Usage Guide
This section provides an explanation of the communication JAVA libraries, for
publishing and subscribing to broker with AMQP and MQTT protocols. Libraries are
available on our public maven, and for using them add repository:

<repository>

<id>archiva.public</id>

<name>Nissatech Public Repository</name>

<url>http://maven.nissatech.com/repository/public/</url>

</repository>

All libraries log actions with log4j. And exceptions are logged with stack trace.

Notes
If both consumers connect to a broker and then the broker goes down, when it gets up
again, consumers will automatically reconnect. But if consumers try for first time to
connect to the broker and the broker is down, a user will get an exception that the
connection is failed. So the user needs to try subscribing again after some period of
waiting. Because of a lot of parameters for consuming, the user needs to create one
instance of a class for every subscribing to the topic. The user also needs to manage
to save the topic and the queue name so if a consumer app goes down, after
reconnecting it will use same queue and get all messages published in that period of
time.

Publisher can trying to publish to the broker, when the broker is up or down, and buffer
message if it’s not possible to connect to broker or publish it. After a first success
connection it will publish all buffered messages. The user can manage to save all
buffered messages if the produce app goes down.

AMQP MESSAGE CONSUMER LIBRARY CLASS

For consuming messages with AMQP protocol you can use our maven library:

https://maven.nissatech.com/#artifact/com.nissatech.presto/amqp-consumer/6.0

We used RabbitMQ amqp-client 5.3.0 for creating consumer class.

Basic usage of consumer:

2018 © Copyright lies with the respective authors and their institutions.

60

https://maven.nissatech.com/#artifact/com.nissatech.presto/amqp-consumer/6.0
http://maven.nissatech.com/repository/public/

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

import com.rabbitmq.client.Envelope;
import consumer.AMQPConsumer;
...
java.util.function.BiConsumer<String, String> consumerFunction = this::doSomething;
AMQPConsumer consumer = new AMQPConsumer(broker_IP_address, topic, consumerFunction);
...
//consumer.useSSL(keyStorePath, keyPassphrase, trustStorePath, trustPassphrase);

try {

 consumer.subscribe();

} catch (AlreadySubscribedException | IOException e) {

 System.out.println(e.getMessage());

} catch (SubscribingFailedException e) {

 waitXminAndRetry(3);

}

...
//doSomething is the method that gets executed on every received message
private void doSomething(String message, String topic) {
...
}

Consumer has two constructors: (1) one with host address (IP of broker node), topic
(topic to be subscribed to) and messageConsumer (biConsumer for processing
message and envelope); with this constructor use subscribe function without
arguments; (2) other constructor doesn’t set topic, so when subscribing you need to
use subscribe function with topic argument. Or he gets exception that topic can’t be
null. Constructors also initialize AMQP connection:

● Class create new connection factory, set host, username and password to it.
For now it uses default (guest) username and password. When we add specific
users to RabbitMQ, with setUsernameAndPassword this data can be
changed.

● Default vhost is /, and probably there is no need for some other, but we enable
for user to setVhost, if later we create specific vhost for specific users.

● Network recovery interval is set to 10s, with this we enabled automatic recovery
so in network failure consumer try every 10s to reconnect, restore connection
listeners, re-open channels, restore channel listeners. we also enabled topology
recovery, which involves recovery of exchanges, queues, bindings and
consumers. Also connection timeout (connection establishment timeout in
milliseconds; zero for infinite) is set to 0.

● Port is automatically set to 5672. When user enable SSL on initiation of
connection, port is changed to 5671, sslSockerFactory is prepared with given
files and added to connection factory. If it failed to create this factory it log error
and set connection without SSL.

This initialization is called when any of mentioned parameters is changed.

Subscribing check if topic is not null, check if there is no already other subscribing on
this instance, try to create connection and channel, add listeners, declares exchange
and queue, binds that queue to exchange and starts consuming:

● Check if topic name that user tries to connect isn’t null. Log error message and
return IOException. Also because of a lot of parameters for consuming and that

2018 © Copyright lies with the respective authors and their institutions.

61

https://www.rabbitmq.com/api-guide.html#topology-recovery
https://www.rabbitmq.com/api-guide.html#topology-recovery
https://www.rabbitmq.com/api-guide.html#connection-recovery
https://www.rabbitmq.com/api-guide.html#recovery
https://www.rabbitmq.com/vhosts.html

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

the messages from other topics are probably processed in other way, user
needs to create one instance of class for every subscribing to different topic. So
it checks if there is some connections already. Log error message and return
AlreadySubscribedException if this is case.

● After this try to create connection and channel. If it doesn’t success log error
and return SubscribingFailedException.

● Add ShoutdownListener to connection and channel, so they log when connection
is lost. And add RecoveryListener to channel so user gets log when recovery is
started and finished.

● Limit of unacknowledged messages on a channel (prefetchCount) is set to
1000. User can change this also.

● By declaring exchange we verify that exchange exists, or create it if needed.
This method creates an exchange if it does not already exist, and if the
exchange exists, verifies that it is of the correct and expected type. Default
exchange is presto.cloud TOPIC exchange, and probably there is no need for
some other, but we enable for user to setNewExchange with other name and
type of exchange.

● We also declare queue. If queue name is null or empty string, we create it like
"amqp-subscriber-rabbit" + nanoTime. User can also set some queue name,
and this functionality is used for recovery of consumer application. By default
queue is durable, non autodelete, non exclusive, and has 24 hours to live.
All this parameters can be changed before subscribing.

● By binding queue we say to exchange that it can send data to that queue to a
defined topic.

● If some exception occurred in this steps, connections will be closed. Error logged
and SubscribingFailedException will be sent to user.

● After this we start consuming message. Message payload and topic name are
processed with consume function. If an application needs to persist data, then it
should ensure the data is persisted prior to returning from this function, as after
returning from this funcion, the message is considered to have been delivered
(auto acknowledge), and will not be reproducible. And consumer logs the data.

● In the end user can unsubscribe from broker. With unsubscribing also channel
and connection are closed.

AMQP MESSAGE PRODUCER LIBRARY CLASS

For producing messages with AMQP protocol you can use our maven library:

https://maven.nissatech.com/#artifact/com.nissatech.presto/amqp-producer/3.0

We used RabbitMQ amqp-client 5.3.0 for creating producer class.

Basic usage of producer:

import producer.AMQPProducer;
...
AMQPProducer producer = new AMQPProducer(broker_IP_address);
...
//producer.useSSL(keyStorePath, keyPassphrase, trustStorePath, trustPassphrase);

try {
 producer.publish(message, topic);

2018 © Copyright lies with the respective authors and their institutions.

62

https://maven.nissatech.com/#artifact/com.nissatech.presto/amqp-producer/3.0
https://www.rabbitmq.com/tutorials/amqp-concepts.html#queues
https://www.rabbitmq.com/tutorials/amqp-concepts.html#exchanges

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

catch (IOException e) {

 System.out.println(e.getMessage());

}

Producer has two constructors: (1) one with host address (IP of broker node) and topic
(topic to be published to), with this constructor use publish function only with
message argument; (2) other constructor doesn’t set topic, so when publishing you
need to use publish function with topic argument. Or he gets exception that topic
can’t be null. Constructors also initialize AMQP connection:

● Class create new connection factory, set host, username and password to it.
For now it uses default (guest) username and password. When we add specific
users to RabbitMQ, with setUsernameAndPassword this data can be
changed.

● Default vhost is /, and probably there is no need for some other, but we enable
for user to setVhost, if later we create specific vhost for specific users.

● Automatic recovery and topology recovery are disabled, because we create new
connection and channel per message. Also connection timeout (connection
establishment timeout in milliseconds; zero for infinite) is set to 0.

● Port is automatically set to 5672. When a user enables SSL on initiation of
connection, port is changed to 5671, sslSockerFactory is prepared with given
files and added to connection factory. If it failed to create this factory, it logs
error and sets connection without SSL.

This initialization is called when any of mentioned parameters is changed.

Publishing checks if topic is not null, buffers message, tries to create connection and
channel, add listeners, declares exchange, publishes message to defined topic, logs
work and closes channel and connection:

● Check if topic name that user tries to connect isn’t null. Log error message and
return IOException.

● Persistence of message is automatically set to true. With one of public function
user can set persistent of sent message. Or it can set persistence for all
messages with setPersistent. True set Delivery mode (Should the message
be persisted to disk?) to 2, and false is setting it to 1.

● Buffered message and log work.

● After this try to create connection and channel. If it doesn’t success log
message and error.

● By declaring exchange we verify that exchange exists, or create it if needed.
This method creates an exchange if it does not already exist, and if the
exchange exists, verifies that it is of the correct and expected type. Default
exchange is presto.cloud TOPIC exchange, and probably there is no need for
some other, but we enable for user to setNewExchange with other name and
type of exchange.

● On first successful connection it publishes all buffered messages like FIFO, and
logs work.

● If some exception occurred in this step, connections will be closed. Error will be

2018 © Copyright lies with the respective authors and their institutions.

63

https://www.rabbitmq.com/persistence-conf.html
https://www.rabbitmq.com/api-guide.html#topology-recovery
https://www.rabbitmq.com/api-guide.html#connection-recovery
https://www.rabbitmq.com/vhosts.html

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

logged. Because of buffering we don’t need to send exception to user.
● At end channel and connection are closed.

2018 © Copyright lies with the respective authors and their institutions.

64

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

MQTT MESSAGE CONSUMER LIBRARY CLASS
For consuming messages with MQTT protocol you can use our maven library:

https://maven.nissatech.com/#artifact/com.nissatech.presto/mqtt-consumer/3.0

We used eclipse.paho.client.mqttv3 1.2.0 for creating producer class.

Basic usage of consumer:

import consumer.MQTTConsumer;
...
java.util.function.BiConsumer<String, String> consumerFunction = this::doSomething;
MQTTConsumer consumer = new MQTTConsumer(broker_IP_address, topic, consumerFunction);
...
//consumer.useSSL(keyStorePath, keyPassphrase, trustStorePath, trustPassphrase);
try {

 consumer.subscribe();

} catch (AlreadySubscribedException | IOException e) {

 System.out.println(e.getMessage());

} catch (SubscribingFailedException e) {

 waitXminAndRetry(3);

}
...
//doSomething is the method that gets executed on every received message
private void doSomething(String message, String topic) {
...
}

Consumer has two constructors: (1) one with host address (IP of broker node), topic
(topic to be subscribed to) and messageConsumer (biConsumer for processing
message and envelope), with this constructor use subscribe function without
arguments; (2) other constructor doesn’t set topic, so when subscribing you need to
use subscribe function with topic argument. Or he gets exception that topic can’t be
null. Constructors also initialize MQTT connection options:

● Class create new MqttConnectOptions, set host, username and password to
it. For now it uses default (guest) username and password. When we add
specific users to RabbitMQ, with setUsernameAndPassword this data can be
changed.

● Default vhost is /, and probably there is no need for some other, but we enable
for user to setVhost, if later we create specific vhost for specific users.

● Automatic reconnect is set to true, in the event that the connection is lost, the
client will attempt to reconnect to the server. It will initially wait 1 second before
it attempts to reconnect, for every failed reconnect attempt, the delay will
double until it is at 2 minutes at which point the delay will stay at 2 minutes.
Also connection timeout (connection establishment timeout in milliseconds; zero
for infinite) is set to 0.

● Clean session is set to false and both the client and server will maintain state
across restarts of the client, the server and the connection. The server will treat
a subscription as durable.

● Keep alive interval measured in seconds, define the maximum time interval
between messages sent or received. It enables the client to detect if the server

2018 © Copyright lies with the respective authors and their institutions.

65

https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#setKeepAliveInterval-int-
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#isCleanSession--
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#isAutomaticReconnect--
https://www.rabbitmq.com/vhosts.html
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html
https://maven.nissatech.com/#artifact/com.nissatech.presto/mqtt-consumer/3.0

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

is no longer available, without having to wait for the TCP/IP timeout. The client
will ensure that at least one message travels across the network within each
keep alive period. In the absence of a data-related message during the time
period, the client sends a very small "ping" message, which the server will
acknowledge. The default value is 60 seconds.

● Port is automatically set to 1883. When user enables SSL on preparation of
connection options, port is changed to 8883, sslSockerFactory is prepared with
given files and added to connection factory. If it failed to create this factory it
logs error and sets connection without SSL.

This initialization is called when any of mentioned parameters is changed.

Subscribing check if topic is not null, check if there is no already other subscribing on
this instance, generate queue name, try to create client, connect client to broker with
set options, set callback and starts consuming:

● Check if topic name that user tries to connect isn’t null. Log error message and
return IOException. Alos because of a lot of parameters for consuming and that
messages from other topics are probably processed in other way, user needs to
create one instance of class for every subscribing to different topic. So it checks
if there is some connection already. Log error message and return
AlreadySubscribedException if this is case.

● MQTTConsumer instance try to create new MQTT client with queue name and
broker url. If queue name is null or empty string, we generate it with ClientId
[“paho” + nanoTime]. RabbitMQ queuename depends on generated ClientId,
and for ClientId have queue per subscription QoS level. It’s like “mqtt-
subscription-” + queue name + QoSLevel. User can also set some queue
name, and this functionality is used for recovery of consumer application. If
creating client doesn’t have success, log error and return
SubscribingFailedException.

● Set callback to same class. Enable an application to be notified when
asynchronous events related to the client occur. Had three methods:

○ One is called when the connection to the server is lost. Log event.
○ Second is called when delivery for a message has been completed, and

all acknowledgments have been received. We don’t use this.
○ And third is called when a message arrives from the server. In this

method we accept message and topic name with message consumer. If
an application needs to persist data, then it should ensure the data is
persisted prior to returning from this function, as after returning from this
function, the message is considered to have been delivered (auto
acknowledge), and will not be reproducible. And consumer logs the data.

● Try to connect it to broker with specified connection options.
● Subscribe to defined topic with seletcted level of QoS. Default state of QoS is 1.

○ Transient (QoS0) subscription use non-durable, auto-delete queues that
will be deleted when the client disconnects.

○ Durable (QoS1) subscriptions use durable queues. Whether the queues
are auto-deleted is controlled by the client's clean session flag. Clients
with clean sessions use auto-deleted queues, others use non-auto-
deleted ones.

This can be changed with setDurable and setAutoDelete.

● If some exception occurred in this steps, connections will be closed. Error logged
and SubscribingFailedException will be sent to user.

● In the end user can unsubscribe from broker. With unsubscribing user also

2018 © Copyright lies with the respective authors and their institutions.

66

https://www.rabbitmq.com/mqtt.html#durability
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttCallback.html

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

disconnects client and closes connection.

Difference to AMQP is that some parameters are set in rabbitmq configuration file. Like
name of exchange, queue time to live, and prefetch count.

{exchange, <<"presto.cloud">>},
{subscription_ttl, 86400000},
{prefetch, 10},

2018 © Copyright lies with the respective authors and their institutions.

67

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

MQTT MESSAGE PRODUCER LIBRARY CLASS

For producing messages with MQTT protocol you can use our maven library:

https://maven.nissatech.com/#artifact/com.nissatech.presto/mqtt-producer/6.0

We used eclipse.paho.client.mqttv3 1.2.0 for creating producer class.

We had some problem because stable version of Paho MQTT Java client has some
known issue with client disconnecting and thread exit but we workaround that
(https://github.com/eclipse/paho.mqtt.java/issues/402).

Basic usage of publisher:

import producer.MQTTProducer;
...
MQTTProducer producer = new MQTTProducer(broker_IP_address);
...
//producer.useSSL(keyStorePath, keyPassphrase, trustStorePath, trustPassphrase);
try {
 producer.publish(message, topic);

catch (IOException e) {

 System.out.println(e.getMessage());

}

Producer has two constructors: (1) one with host address (IP of broker node) and topic
(topic to be published to), with this constructor use publish function only with
message argument; (2) other constructor doesn’t set topic, so when publishing you
need to use publish function with topic argument. Or he gets exception that topic
can’t be null. Constructors also initialize MQTT connection options:

● Class create new MqttConnectOptions, set host, username and password to
it. For now it uses default (guest) username and password. When we add
specific users to RabbitMQ, with setUsernameAndPassword this data can be
changed.

● Default vhost is /, and probably there is no need for some other, but we enable
for user to setVhost, if later we create specific vhost for specific users.

● Automatic reconnect is set to false, because of buffering the messages. Also
connection timeout (connection establishment timeout in milliseconds; zero for
infinite) is set to 0.

● Clean session is set to true, client is not subscribing, but only publishing
messages to topics, it doesn’t need for server to treat a subscription as durable
(to any session information be stored on the broker).

● Keep alive interval measured in seconds, define the maximum time interval
between messages sent or received. It enables the client to detect if the server
is no longer available, without having to wait for the TCP/IP timeout. The client
will ensure that at least one message travels across the network within each
keep alive period. In the absence of a data-related message during the time
period, the client sends a very small "ping" message, which the server will
acknowledge. The default value is 60 seconds.

2018 © Copyright lies with the respective authors and their institutions.

68

https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#setKeepAliveInterval-int-
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#isCleanSession--
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#isAutomaticReconnect--
https://www.rabbitmq.com/vhosts.html
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html
https://github.com/eclipse/paho.mqtt.java/issues/402
https://maven.nissatech.com/#artifact/com.nissatech.presto/mqtt-producer/6.0

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

● Port is automatically set to 1883. When a user enables SSL on preparation of
connection options, port is changed to 8883, sslSockerFactory is prepared with
given files and added to connection factory. If it failed to create this factory it
log error and set connection without SSL.

This initialization is called when any of mentioned parameters is changed.

Publishing check if topic is not null, buffered message, try to create client, connect
client to broker with set options, publish message to defined topic, log work and close
client:

● Check if topic name that user tries to connect isn’t null. Log error message and
return IOException.

● Persistence of message is automatically set to true. With one of public function
user can set persistent and/or retained status of sent message. Or he/she can
set persistence for all messages with setPersistent. True set QoS to 1, and
false is setting it to 0. By default message is not retained.

● Buffered message and log work.

● After this try to create new MQTT client with random generated ID and broker
url. If it doesn’t succeed, log message and error.

● Connect it to broker with specified connection options. If some exception
occurred client will be closed. Error will be logged. Because of buffering we don’t
need to send exception to user.

● On first successful connection it publishes all buffered messages like FIFO, and
logs work.

● At end it disconnects and closes client.

As it said in consumer, exchange name is set in rabbitmq config file.

{exchange, <<"presto.cloud">>}

SSL (for all libraries)
If user wants to use SSL, for now, it need to call useSSL function with data (paths and
passphrases) about keystore and truststore before subscribing in any way. User can
also check if isSsl, and after adding data to stores change status of SSL with
turnOnSsl on and off. Also there are functions for getting the data about stores.

For now, TLS works with paths to keystore and truststore and broker only trust his own
certificate, because of that we provide client folder for all users. With CA from on
broker instances, we create and sign client cert, and create stores with next script.

#!/bin/bash
set -eu
#
Prepare the client's stuff.
#
mkdir client
cd client

Generate a private RSA key.
openssl genrsa -out key.pem 2048

2018 © Copyright lies with the respective authors and their institutions.

69

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Generate a certificate from new private key.
openssl req -new -key key.pem -out req.pem -outform PEM -subj /CN=$(hostname)/O=client/
-nodes

Sign the certificate with our CA.
cd ../testca-pilot
openssl ca -config openssl.cnf -in ../client/req.pem -out ../client/cert.pem -notext -batch
-extensions client_ca_extensions

Create a key store that will contain this certificate.
cd ../client
openssl pkcs12 -export -out key-store.p12 -in cert.pem -inkey key.pem -passout
pass:NissaPrEstoCloud

Create a trust store that will contain the certificate of our CA.
openssl pkcs12 -export -out trust-store.p12 -in ../testca-pilot/cacert.pem -inkey ../testca-
pilot/private/cakey.pem -passout pass:Pr3570Cloud

Make files visible to user
chmod 755 key-store.p12 trust-store.p12

So for usage unzip file with “PrEstoNissaCloud” password and use stores in classes
like:

instance.useSSL("/home/nikola/Desktop/client/key-store.p12","NissaPrEstoCloud".toCharArray(),
"/home/nikola/Desktop/client/trust-store.p12", "passXXX".toCharArray());

We will try to make chain of trust and implement this in way that you can create your
certs and get them signed by our CA.

How to reconnect consumer to same queue if app goes down?
For every subscriber back up is created (we keep topics and queue names in backup
file).

public void backUp(DataConsumer dataConsumer) {

 String topic = dataConsumer.getTopic();

 String queueName = dataConsumer.getQueueName();

 File dir = new File(file);

 dir.mkdir();

 try (BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(

 new FileOutputStream(file + topic)))) {

 writer.write(topic + "\n");

 writer.write(queueName);

 } catch (Exception e) {

 throw new SubscriberBackupException("Could not create back up for subscriber", e);

 }

 }

If the connection fails, the subscriber automatically reconnects to topic it was
connected to before the fail.

2018 © Copyright lies with the respective authors and their institutions.

70

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

If our application that is in charge of receiving data from the broker fails, after the new
start, the back up for every subscriber is restored. This way we can be sure that data
that was in queues when the crash happened is received. Without this back up, new
queues would be created and data would be lost.

private void createSubscribersFromBackup(File dir) {
 for (File file : dir.listFiles()) {
 DataConsumer dataConsumer = consumerDataBackup.getBackup(brokerUri, file);
 dataConsumer.subscribe();
 }
}

public DataConsumer getBackup(String brokerUri, File fileName) {

 try (BufferedReader reader = new BufferedReader(new InputStreamReader(

 new FileInputStream(fileName)))) {

 String topic = reader.readLine();

 String queueName = reader.readLine();

 DataConsumer dataConsumer = new DataConsumer(brokerUri);

 dataConsumer.setQueueName(queueName);

 return dataConsumer;

 } catch (Exception e) {

 throw new SubscriberBackupException("Could not get back up for subscriber", e);

 }

 }

How to save buffered messages form producer if app goes down?

import producer.BufferedAMQPMessage;

public class BufferedMessagesSaver {

 private static BufferedMessagesSaver bufferedMessagesSaver;
 ObjectMapper objectMapper;
 private Logger logger = Logger.getLogger(getClass().getName());
 String file = "buffer";

 private BufferedMessagesSaver() { }

 public static BufferedMessagesSaver getBufferedMessagesSaver() {
 if (bufferedMessagesSaver== null)
 bufferedMessagesSaver = new BufferedMessagesSaver();
 return bufferedMessagesSaver;
 }

 public void saveBufferedMessages(List<BufferedAMQPMessage> messageList) {
 try {
 objectMapper.writeValue(new File(file), messageList);
 } catch (IOException e) {
 logger.log(Level.SEVERE,"Could not back up buffered messages.");
 }
 }

 public List<BufferedAMQPMessage> readBufferedMessages() {
 List<BufferedAMQPMessage> bufferedAMQPMessages = new ArrayList<>();
 File file = new File(this.file);
 if(file.exists()) {
 try {

2018 © Copyright lies with the respective authors and their institutions.

71

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

 bufferedAMQPMessages = objectMapper.readValue(file, new
TypeReference<List<BufferedAMQPMessage>>() {});
 } catch (IOException e) {
 logger.log(Level.SEVERE, "Could not restore buffered messages.");
 }
 file.delete();
 }
 return bufferedAMQPMessages;
 }
}

Appendix B – Monitoring the Edge: On/Offloading
Client

An On/Offloading Client is installed on every edge resource. On/Offloading Client is
responsible for registering the edge node in the Cloud and Edge Resources Repository
through the Edge On/Offloading Server. Moreover, it responds to the Edge
On/Offloading Server’s requests for the on/offloading tasks which can be start or stop
of application between edge nodes and datacenters. Such communication between
the Edge On/Offloading Server and On/Offloading Client is made via a Java Socket API.

The On/Offloading Client has been developed as a lightweight Java code for
deployment on Raspberry Pi and similar devices. In the next step of the PrEstoCloud
project, it will be defined if it would be possible to run the implemented On/Offloading
Client on Android-based devices. However, this component will possibly have a generic
architecture able to be deployed on at least all types of Linux-based devices.

The typical scenario is a system which includes sensors able to measure some
parameters and send the raw data to a container-based application running on an
edge node. The application consists of two parts: (i) aggregating data and (ii)
processing data. In this scenario, icons represent as follows:

2018 © Copyright lies with the respective authors and their institutions.

72

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

 Figure 11: Meaning of icons used to show the functionality of On/Offloading
Agent

In such a scenario, the part used to aggregate data receives the raw streaming data,
collects and sends the aggregated data to another part which is used to process the
data. In this case, both aggregating and processing data are performed in the
container running on the edge node.

Figure 12: Both aggregating and processing data are performed in the container
running on the edge node

For example in the logistic use case, all sensors such as accelerometer and
magnetometer are connected to the edge node. In the edge node, data is aggregated
and processed by the application. This application is useful in order to notify
stakeholders (e.g. driver via alerts on a mobile phone or tablet) on situations where a
possible accident may occur or attention is required.

2018 © Copyright lies with the respective authors and their institutions.

73

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Figure 13: Presence of mobile phone or tablet

There are conditions where an edge node is not able to provide computing operations
any more. For example if it is overloaded due to an increase in the number of sensors
connected to the system during execution or the edge node is going to run out of
storage capacity. In such conditions, the part which is used to process the data should
be run on the cloud. In some cases, sensors are physically connected to the edge
node, and the part used to aggregate the data needs to be run on the edge node.
Therefore in this case, the edge node operates as intermediary to transmit the data to
the cloud for data processing.

An On/Offloading Client is installed on every edge node. In such conditions, the
On/Offloading Client responds to the Edge On/Offloading Server’s requests for the
on/offloading tasks. In this case, the request is terminating (stop) the processing data
on the edge node or launching (start) the processing data on the cloud. In other words,
if this condition happens, there will be two containers. One container is employed to
aggregate data on the edge node, and another one is used to process data on the
cloud. To this end three successive steps should be accomplished by the On/Offloading
Client: (1) stop the current container instance running on the edge node, (2) start a
new container instance on the cloud that includes the data processing part, and (3)
start a new container instance on the edge node that includes the data aggregating
part.

Figure 14: Stop the processing data on the edge node and start the
processing data on the cloud performed by the On/Offloading Client

In some other cases, the part employed to aggregate data should also start working
on the cloud in addition to the part used to process data. In such situations,
On/Offloading Client responds to the Edge On/Offloading Server’s request which is stop

2018 © Copyright lies with the respective authors and their institutions.

74

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

both aggregating and processing data on the edge node and start them on the cloud.
In this case, both aggregating and processing data are executed in the container
running on the cloud. To this end two successive steps should be accomplished by the
On/Offloading Client: (1) stop the current container instance running on the edge
node, (2) start a new container instance on the cloud that includes both data
aggregating part and data processing part.

Figure 15: Stop both aggregating and processing data on the edge node and
start them on the cloud performed by the On/Offloading Client

2018 © Copyright lies with the respective authors and their institutions.

75

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Appendix C – Technical integration in Use cases
In order to illustrate the connection between the use case development and the
technical architecture, in this section we provide some details about the mapping
between the technical architecture and use cases.

It is done through providing a figure with depicted mappings and some indications why
the integration is required thrugh a short questionnaire.

LiveU Use Case
In the following figure, the components to be used in the use case are marked in
green.

Figure 16: Mapping of the LiveU use case to the conceptual architecture

Questionnare:

Q1: What data processing methods you believe it makes sense to be sent to
the extreme edge?

Video Analytic and Storing - this will prevent sending unreliable, or un-required data
from the extreme edge onward.

Link Manager - for creating an improved performance and reducing a round trip time
for feedback sensitive adaptive algorithms.

Q2:Do you have some example of methods that cannot/shouldn’t be move to
the extreme edge? (optional)

Yes, all the methods running on the edge device shall stay there,

Q3: How the incoming data stream scales? Provide one or two examples.

2018 © Copyright lies with the respective authors and their institutions.

76

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

The Media use case deals with unpredicted amount of streams coming from various
events planned and unplanned, from professional broadcasters and from amatur
consumers contributing their streams.

Q4: How your compute infrastructure will be able to scale? What you believe
are realistic limits of scalability for your case (in terms of VMs, cost, devices
etc)?

We have a large number of on premise devices, that can be considered as a private
cloud, the scaleout to public clouds will be required when resources of private cloud
will not be available, also, some of the processing such as the Link Manager and the
Video Analytic shall be performed at the mobile edge to increase performance and
reduce transfer costs. It is thus required to scale at mobile edge to support the
streams processing.

Q5: Do you have a goal in QoS that you need to keep?

Yes, interactive services require minimum delays, in addition, video streaming in prime
time, shall be high quality. Thus it is very important for us to have a stable, and
continuous high performance with low delays.

CVS Use Case
Following figure illustrates the components to be used in the CVS use case.

Figure 17: Mapping of the CVS use case to the conceptual architecture

Questionnaire:

2018 © Copyright lies with the respective authors and their institutions.

77

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Q1: What data processing methods you believe it makes sense be sent to the
extreme edge?
The proposed framework is able to observe driving dynamics (e.g. acceleration,
braking, turning, etc.), perform real-time data analytics at the extreme edge of the
network and trigger alerts to drivers and fleet managers on situations where new
decisions should be made. Therefore, data processing methods performed at the
extreme edge are as follows:

 Collecting and storing the sensory data.

 fast extraction of useful information from the data streams that can be used to
profile drivers' behavior.

 triggering automated alerts at run-time to help stakeholders (e.g. driver, logistic
center, insurance company or vehicle owner).

Q2: Do you have some example of methods that cannot/shouldn’t be move to
the extreme edge? (optional)
Methods such as long-term storage of sensory data and complete offline data analytics
e.g. simultaneous display of several graphs for a long period of time.

Q3: How the incoming data stream scales? Provide one or two examples.
Situations may arise in which an edge node is no longer able to provide storing or
computing operations because there are no more spare storage capacity or available
computing cycles for example due to increasing amount of data to be stored and
processed. Therefore, the application running on the edge node should be terminated
and deployed on the cloud side. In such conditions, the edge node operates as
intermediary to receive the measured data from sensors and transmit the data to the
cloud for data storage and processing.

Q4: How your compute infrastructure will be able to scale? What you believe
are realistic limits of scalability for your case (in terms of VMs, cost, devices
etc)?
Cloud resources which are applied as a pay-per-use on-demand infrastructure can
employ auto-scaling mechanism when more or less resources are needed over time in
conditions where the number of vehicles included in the transport logistic system
varies at run-time. Therefore, a set of metrics related to cloud-based infrastructure
should be measured continuously by the Monitoring Probe.

Q5: Do you have a goal in QoS that you need to keep?
Precision and recall of anomalies detected in real-time represent the number of
reported alerts which are processed by the edge node and also valid (precision
measure), and the number of possible alerts that the edge node actually detected
(recall measure).

2018 © Copyright lies with the respective authors and their institutions.

78

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Aditess Use Case
The following figure illustrates the architecture realization for Aditess use case. With
dark green are depicted the basic components shall be used in order to achive the use
case goals, while with light green are presented components that will be used but are
considered beneficial but not obligatory.

Figure 18: Mapping of the Aditess use case to the conceptual architecture

Questions:

Q1: What data processing methods you believe it makes sense to be sent to
the extreme edge?

Some methods of video and audio stream analytics

Q2: Do you have some example of methods that cannot/shouldn’t be move to
the extreme edge? (optional)

-

Q3: How the incoming data stream scales? Provide one or two examples.

CCTVs or UAVs that were inactive are providing stream, Mobile phones also can
provide input stream and this will lead to additional data input.

Q4: How your compute infrastructure will be able to scale? What you believe
are realistic limits of scalability for your case (in terms of VMs, cost, devices
etc)?

2018 © Copyright lies with the respective authors and their institutions.

79

PrEstoCloud GA 732339 Deliverable D6.1
“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”

Scaling can be done by using public cloud resources, but before that the local (RPU)
and extreme edge resources must be exploited (see presentation for example). The
available resources in the RPU, extreme edge and VMs should be monitored in order to
decide scale in or scale out scenarios.

Q5: Do you have a goal in QoS that you need to keep?

In the case of audio and video analytics, we need each of the fragments that are
created and running at edge or cloud resource to achieve some monitorable goals.
This can be the time needed to execute the method of each fragment(e.g.: to be less
than 1sec).

2018 © Copyright lies with the respective authors and their institutions.

80

	PrEstoCloud GA 732339 Deliverable D6.1
	“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”
	PrEstoCloud GA 732339 Deliverable D6.1
	“Proactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processing”
	Change Log
	Table of Contents
	List of Figures
	List of Abbreviations
	1. Executive Summary
	2. Introduction
	2.1 Scope
	2.2 Relation to PrEstoCloud Tasks
	2.3 Structure

	3. PrEstoCloud Integrated Framework Architecture
	3.1 The PrEstoCloud Platform
	3.2 Detailed Description of the Components
	3.3 Detailed Description of the Interfaces

	4. Requirements Refinement
	5. Technical Integration and Planning
	5.1 Introduction
	5.2 Integration at Deployment Level
	5.2.2 Sandbox-based approach
	5.3 Integration at Interface Level
	5.4 Code Level Integration
	5.5. Knowledge level integration
	5.6 Integration Planning

	6. Conclusions
	7. References
	Appendix A – Broker: additional instructions related to the architecture
	A1. The structure of the topics
	A2. Broker Usage Guide

	Appendix B – Monitoring the Edge: On/Offloading Client
	Appendix C – Technical integration in Use cases
	LiveU Use Case
	CVS Use Case
	Aditess Use Case

