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%ØÅÃÕÔÉÖÅ 3ÕÍÍÁÒÙ 

This deliverable reports on the work performed under the Task 3.5 which aims at the development 
of a Spatio Temporal library that can be used for persistence of data during computations performed 
at the edge. More specifically, when performing distributed computations, there is a need for 
reading and writing to a data storage structure which is accessible by all compute nodes. This data 
structure must expose an API (i.e. read/write functional primitives) which will be used by the 
business logic of the computations per se. In case the computations are performed in a data center 
there are many data structures that can be used. In fact, most of the big data frameworks depend 
on underlying storage engines (e.g. HDFS) in order to handle immutable partition collections such as 
Resilient Data Sets in Spark. 

Such data storage structures operate on highly stable data centers and rely on preconfigured 
redundancy elements that are placed by DevOps. Furthermore, the communication of the big data 
workers with the storage engine is extremely efficient since the network latency between the 
workers and the storage engine is minimal (less than 1ms in some cases). Finally, these data 
structures are able, by design, to handle parallel reads and writes by independent workers. However, 
such structures cannot be used in the case of edge computations. In case of a distributed 
computation that is performed in the edge part of the network the operational prerequisites of these 
data structures are totally invalidated.  Instead of stable Data Center resources, the operational 
environment consists of resource limited devices that formulate temporal connections using mesh 
connectivity principles. Such connections can be established or broken at any time based on the 
mobility profile of the edge devices. One possible solution regarding the lack of existence of such a 
structure is to offload all persistence requests to the backhaul part of the network.  

Unfortunately, this solution is not viable because of many reasons. First, this solution would assume 
that edge resources are continuously connected to DC resources which is not the case in general. 
Furthermore, the connectivity delay that would be paid as a penalty of the offloading process would 
raise a significant overhead to the computational task that would interact with the storage (even in 
a good case 50ms cannot be compared with 1ms). Finally, offloading data to the backhaul would 
result to unnecessary utilization of the network capacity. 

An elegant solution to the problem of lack of storage relies on the usage of a Distributed Hash Table 
(hereinafter DHT).  A DHT is a data structure that is created and maintained by many network 
participants. Such a structure is used widely today for temporal storage in extremely sophisticated 
frameworks such as Consul, etcd, etc. The challenge in the PrEstoCloud paradigm is that this 
structure must operate on top of decentralized dynamic networks. A network that consists of nodes 
that formulate temporal connections with its adjacents and in parallel do not rely on a central node 
ŦƻǊ ǊƻǳǘƛƴƎ ƛǎ ŎŀƭƭŜŘ Ψmesh networkΩ. The requirement of being operational on top of mesh networks 
raises many challenges such as a) how edge resources join seamlessly in a mesh using zero-touch 
configuration? b) how resources are globally addressable taking under consideration that mesh 
networks may split or join on demand? c) how parallel reads and writes are handled in a consistent 
way? and d) how PrEstoCloud computation tasks make use of the storage API? 

All these requirements can be satisfied using a combination of protocols in a layered manner that 
are encapsulated in a so-called PrEstoCloud Device Stack (PDS). PDS is a software package that upon 
installation performs all appropriate configurations so that an edge resource is able to accept 
computational tasks and in parallel able to interact with the DHT that is member of.  The cornerstone 
technologies that have been used in order to realize PDS are a) the 802.11s protocol (layer-2 mesh 
networking protocol); b) the CJDNS IPv6-based routing protocol; c) the JPPF distributed computing 
framework, d) the Docker runtime engine and e) an implementation of the Chord DHT protocol 
(Hazelcast). It should be mentioned that the PDS is currently operational in Raspberry-based devices 
(ARM-based architecture). In the second phase of the project, additional architectures will be 
supported.  
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1. )ÎÔÒÏÄÕÃÔÉÏÎ 

1.1 Scope 

The scope of this deliverable is to elaborate on the Spatiotemporal Processing capabilities that will 
be offered by the PrEstoCloud framework. These capabilities relate to the need that PrEstoCloud 
Tasks have for storing and retrieving datasets from other tasks during execution of jobs on the edge 
devices. The major difficulty that has to be tackled is that edge devices are loosely connected and 
thus they cannot rely on an existing storage protocol that is usable in reliable data centers. The 
alternative of sending and requesting data during a task execution to a datacenter is a priori 
unacceptable since it would radically increase the delay and the traffic between the edge (also 
addressed as fronthaul in the telecommunications jargon) and the datacenter (also addressed as 
backhaul). This problem is illustrated on the figure below (Figure 1.1). 

 

Figure 1.1 Lack of reliable low-latency storage during task execution on the Edge  

In order to achieve efficient and transactional storage of data during PrEstoCloud Task execution a 
PrEstoCloud Spatio Temporal  Library (hereinafter PSTL) has been developed which can be used 
unconditionally by any PrEstoCloud Task that is executed on an Edge Device. The storage library is 
responsible for storing and retrieving key-value sets with consistency guarantees irrelevant to the 
dynamicity of the environment. To do so, a layered approach will be followed which will be 
elaborated in detail. 

1.2 Relation to PrEstoCloud Architecture  

As it can be illustrated on Figure 1.2 (see Deliverable D2.3[1]), PSTL library is positioned on the device 
layer. More specifically, the library is part of a complex device stack that is provided during the 
onboarding of a device to a Mesh network.  The PrEstoCloud Device Stack (hereinafter PDS) is 
responsible to undertake many functionalities such as a) layer-2 connectivity on a mesh network; b) 
layer-3 IP address autoconfiguration (avoiding static IP configuration); c) monitoring; d) the 
installation of the management agent (i.e. onloading/offloading Agent) and e) the initiation of PSTL. 
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Figure 1.2 The logical positioning of the PSTL library 

Although the purpose of the deliverable is to shed light on the Spatio Temporal Library the entire 
PrEstoCloud Device Stack will be briefly explained in order to achieve maximum comprehension 
from the reader. 

1.3 Structure   

The deliverable is structured as follows: 

¶ /ƘŀǇǘŜǊ н ǿƛƭƭ ŜƭŀōƻǊŀǘŜ ƻƴ ǘƘŜ ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ƻŦ άƳŀƛƴǘŀƛƴƛƴƎ ŀ ŎƻƴǎƛǎǘŜƴǘ ǘŜƳǇƻǊŀƭ 
ǎǘƻǊŀƎŜ ǎǘǊǳŎǘǳǊŜ ƻƴ ǘƻǇ ƻŦ aŜǎƘ ¢ƻǇƻƭƻƎƛŜǎέΦ ¢ƻǿŀǊŘǎ ǘƘŜǎŜ ƭƛƴŜǎΣ ǘƘŜ ŘƛŦŦƛŎǳƭǘƛŜǎ ŦƻǊ 
building and maintaining such a structure will be analyzed. The cornerstone technology of 
such structures is the usage of Distributed Hash Tables (hereinafter DHTs) 

¶ Chapter 3 will provide a state of the art analysis regarding the problem that has been raised 
above. More specifically, existing techniques for building and maintaining DHTs on top of 
structured and unstructured networks is provided. 

¶ Chapter 4 is dedicated to the analysis of the PrEstoCloud Device Stack (PDS). As it will be 
explained, part of the PDS is the PSTL per se. Yet the entire stack will be elaborated. 

¶ Chapter 5 concludes this deliverable. 
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2. 4ÈÅ ÐÒÏÂÌÅÍ ÏÆ ÌÏ×ȤÌÁÔÅÎÃÙ ÓÔÏÒÁÇÅ ÉÎ -ÅÓÈ 4ÏÐÏÌÏÇÉÅÓ 

2.1 Temporal Data Storage during PrEstoCloud Task execution  

The aim of the PrEstoCloud project is to deliver an efficient real-time stream processing framework 
tailored for edge resources. Based on this, one of the most critical aspects is the selection of an 
appropriate distributed computing framework which will be extended in order to include advanced 
resource management policies. In the frame of PrEstoCloud, the JPPF framework1 has been selected 
based on two main reasons. The first has to do with its ability to be used on resource limited devices 
and second relates to its ability to be able to dynamically expand and shrink its processing nodes 
(workers) in a fault-tolerant way.  

According to the JPPF terminology, which is de-facto adopted in PrEstoCloud, each processing Job is 
split in several Tasks that can be executed in parallel since they have distinct execution contexts i.e. 
non-correlated inputs. These tasks are dynamically allocated to cluster nodes which are part of the 
edge resources. In the frame of PrEstoCloud the JPPF framework had to be extended in various ways 
since the Task-allocation policy has to consult the load prediction module. During the execution of 
a task there is a need for persistence in order for the task to store intermediate or final results that 
are accessible/observable by all tasks that belong to the same job. This flow is depicted on the figure 
below.  

 

Figure 2.1 Lack of reliable low-latency storage during task execution on the Edge  

 

                                         

1 https://www.jppf.org  

https://www.jppf.org/
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As illustrated, a PrEstoCloud application is processing a streaming input and based on a specific 
business logic it performs segmentation of the input in order to process it in parallel. The 
segmentation business logic is performed through the extension of a base class which is addressed 
PrEstoJob. 

Processing per se is performed by another class which must extend the class PrEstoTask. In other 
words, PrEstoJob and PrEstoTask are extended JPPF classes and one PrEstoJob consists of multiple 
PrEstoTasks. During the execution of the PrEstoTasks a developer may store and retrieve results that 
should be queryable by other tasks. Such persistence storage should offer pure decentralization, 
scalability, transactional guarantees and fault-tolerance. To achieve these requirements the 
temporal storage will rely on a reference implementation of a Distributed Hash Table. As we will 
see, such a structure has inherent distribution and scalability properties; yet it is rather difficult to 
be maintained within a loosely coupled topology of edge devices. Such a network topology where 
nodes are temporarily connected without any form of centralized management is addressed as Mesh 
Network. 

 

2.2 DHTs at a glance 

A Distributed Hash Table is a class of decentralized distributed system that provides a lookup service 
similar to a hash table; (key, value) pairs are stored in the DHT, and any participating node can 
efficiently retrieve the value associated with a given key. Responsibility for maintaining the mapping 
from keys to values is distributed among the nodes, in such a way that a change in the set of 
participants causes a minimal amount of disruption. This allows DHTs to scale to extremely large 
numbers of nodes and to handle continuous node arrivals, departures, and failures. 

DHTs form an infrastructure that can be used to build more complex services, such as distributed file 
systems, peer-to-peer file sharing and content distribution systems, cooperative web caching, 
multicast, anycast, domain name services, and instant messaging, social applications etc. Notable 
distributed networks that use DHTs include BitTorrent's distributed tracker2, the Kad network, YaCy3, 
and the Coral Content Distribution Network [2]. 

2.2.1 History 

Research on DHT was originally motivated, in part, by peer-to-peer systems such as Napster4, 
Gnutella5, and Freenet6, which took advantage of resources distributed across the Internet to provide 
useful applications. In particular, they took advantage of increased bandwidth and hard disk capacity 
to provide a file sharing service. These systems differed in how they found the data their peers 
contained. Napster had a central index server: each node, upon joining, would send a list of locally 
ƘŜƭŘ ŦƛƭŜǎ ǘƻ ǘƘŜ ǎŜǊǾŜǊΣ ǿƘƛŎƘ ǿƻǳƭŘ ǇŜǊŦƻǊƳ ǎŜŀǊŎƘŜǎ ŀƴŘ ǊŜŦŜǊ ǘƘŜ ΨǉǳŜǊƛŜǊΩ ǘƻ ǘƘŜ ƴƻŘŜǎ ǘƘŀǘ ƘŜƭŘ 
the results. This central component left the system vulnerable to attacks and lawsuits. 

Gnutella and similar networks moved to a flooding query modelτin essence, each search would 
result in a message being broadcasted to every other machine in the network. While avoiding a single 

                                         

2http://bitconjurer.org/BitTorrent 

3http:// yacy.net/Technology.html 

4http://www.napster.com 

5 Gnutella Protocol Specification http://wiki.limewire.org/index.php?title=GDF 

6http://freenetproject.org/ 
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point of failure, this method was significantly less efficient than Napster. Moreover, Freenet was also 
fully distributed, but employed a heuristic key-based routing in which each file was associated with 
a key, and files with similar keys tended to cluster on a similar set of nodes. Queries were likely to be 
routed through the network to such a cluster without needing to visit many peers. However, Freenet 
did not guarantee that data would be found. 

On the other hand, Distributed Hash Tables use a more structured key-based routing in order to 
attain both the decentralization of Gnutella and Freenet, and the efficiency and guaranteed results 
of Napster. One drawback is that like Freenet, DHTs only directly support exact-match search, rather 
than keyword search, although such functionality can be layered on top of a DHT. 

From 2001 to 2004, six systemsτCAN [3], Chord [4], Pastry [5], Tapestry [6], Kademlia [7] and Viceroy 
[8] τ ignited DHTs as a popular research topic, and this area of research remains active. Outside 
academia, DHT technology has been adopted as a component of BitTorrent and in the Coral Content 
Distribution Network. 

2.2.2 DHT Properties 

DHTs characteristically feature the following properties: 

¶ Decentralization: the nodes collectively form the system without any central coordination. 

¶ Scalability: the system should function efficiently even with thousands or millions of nodes. 

¶ Fault tolerance: the system should be reliable (in some sense) even with nodes continuously 
joining, leaving, and failing. 

A key technique used to achieve these goals is that any node needs to coordinate with only a few 
other nodes in the system ς most commonly, O(log n) of the n participants ς so that only a limited 
amount of work needs to be done for each change in membership. 

Some DHT designs seek to be secure against malicious participants [9] and to allow participants to 
remain anonymous, though this is less common than in many other peer-to-peer (especially file 
sharing) systems. Finally, DHTs also deal with more traditional distributed systems issues such as load 
balancing, data integrity, and performance (in particular, ensuring that operations such as routing 
and data storage or retrieval complete quickly). 

2.2.3 DHT Principles 

The structure of a DHT can be decomposed into several main components. The foundation is an 
abstract keyspace. A keyspace partitioning scheme splits ownership of this keyspace among the 
participating nodes. A logicalnetwork then, connects the nodes, allowing them to find the owner of 
any given key in the keyspace. This logical network is addressed as overlay network. 

Once these components are in place, a typical use of the DHT for storage and retrieval might proceed 
as follows. Suppose the keyspace is the set of 160-bit strings. To store a file with given filename and 
data in the DHT, the SHA-1 7 hash of filename is generated, producing a 160-bit key k, and a message 
put(k,data) is sent to any node participating in the DHT. The message is forwarded from node to 
node through the overlay network until it reaches the single node responsible for key k as specified 
by the keyspace partitioning. The appropriate node stores the key and the data. Any other client can 
retrieve the contents of the file by again hashing filename to produce k and asking any DHT node to 

                                         

7 https://en.wikipedia.org/wiki/SHA-1 
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find the data associated with k with a message get(k). The message will again be routed through the 
overlay to the node responsible for k, which will reply with the stored data. 

These principles are depicted at Figure 2.2 where the inner circle represents the physical topology 
of the mobile nodes while the outer circle represents the DHT overlay. The general idea is that every 
node that is registered to the DHT is able to publish and retrieve data. Please note that the same 
Hash function that is used for node registration in the overlay is used for data registration. This is 
very crucial since it is related to the keyspace partitioning. 

 

 

Figure 2.2 DHT overview 

The keyspace partitioning and overlay network components are described below with the goal of 
capturing the principal ideas common to most DHTs; many designs differ in the details. 

2.2.3.1 Keyspace partitioning 

Most DHTs use some variant of consistent hashings [10] , to map keys to nodes. This technique 
employs a function ɻ όƪ1,k2) which defines an abstract notion of the distance from key k1 to key k2, 
which is unrelated to geographical distance or network latency. Each node is assigned a single key 
called its identifier (ID). A node with ID ixowns all the keys km for which ix is the closest ID, measured 
according to ɻ όƪm,in). 

In order to make keyspace partitioning clearer, let us consider an example from a real DHT 
implementation. The Chord DHT treats keys as points on a circle, and ɻ όƪ1,k2) is the distance traveling 
clockwise around the circle from k1 to k2. Thus, the circular keyspace is split into contiguous segments 
whose endpoints are the node identifiers. If i1 and i2 are two adjacent IDs, then the node with ID i2 
owns all the keys that fall between i1 and i2. This is depicted in Figure 2.3 where a Chord DHT is 
bootstrapped. The DHT is configured to have replication factor equals to two. This practically means 
that every key-value pair that is assigned to the node-responsible is automatically assigned to the 
next two successors in the overlay. So, if a key-value pair with key:K is stored (e.g. by node-F) to the 
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DHT and A<K<B then the authoritative physical node that must store this pair is the one that has 
Hash(NodeID)=B. Because of the replication factor, nodes B,C and D store keys in the range of A-B. 

 

Figure 2.3 /ƘƻǊŘΩǎ ƪŜȅǎǇŀŎŜ ǇŀǊǘƛǘƛƻƴƛƴƎ 

Consistent hashing is based on mapping items to a real angle (or equivalently a point on the edge of 
a circle). Each of the available machines (or other storage buckets) is also pseudo-randomly mapped 
on to a series of angles around the circle. The bucket where each item should be stored is then 
chosen by selecting the next highest angle which an available bucket maps to. The result is that each 
bucket contains the resources mapping to an angle between itself and the next smallest angle. 

If a bucket becomes unavailable (e.g. because the computer it resides on is not reachable), then, the 
angles it maps to will be removed. Requests for resources that would have mapped to each of those 
points now map to the next highest point. Since each bucket is associated with many pseudo-
randomly distributed points, the resources that were held by that bucket will now map to many 
different buckets. The items that mapped to the lost bucket must be redistributed among the 
remaining ones, but values mapping to other buckets will still do so and do not need to be moved. 

A similar process occurs when a bucket is added. By adding an angle, we make any resources 
between that and the next smallest angle map to the new bucket. These resources will no longer be 
associated with the previous bucket, and any value previously stored there will not be found by the 
selection method described above. The portion of the keys associated with each bucket can be 
altered by altering the number of angles that bucket maps to. 

Consistent hashing has the essential property of minimal disturbance of the network during removal 
or addition of nodes since topology-changes affect only the set of keys owned by the nodes with 
adjacent IDs, and leaves all other nodes unaffected. On the other hand, in traditional hash tables 
addition or removal of one bucket causes nearly the remapping of the entire keyspace. Since any 
change in ownership typically corresponds to bandwidth-intensive movement of objects stored in 
the DHT from one node to another, minimizing such reorganization is required to efficiently support 
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high rates of churn (node arrival and failure). The most common consistent Hashing function is SHA-
1.  

2.2.3.2 Overlay Network 

Each node maintains a set of links to other nodes (its neighbors or routing table). Together these 
links form the overlay network. A node picks its neighbors according to a certain structure, called the 
network's topology. 

All DHT topologies share some variant of the most essential property: for any key k, each node either 
knows a node ID which owns k or has a link to a node whose node ID is closer to k, in terms of the 
keyspace distance defined above. It is then easy to route a message to the owner of any key k using 
the following greedy algorithm (that is not necessarily globally optimal): at each step, forward the 
message to the neighbor whose ID is closest to k. When there is no such neighbor, then we must 
have arrived at the closest node, which is the owner of k as defined above. This style of routing is 
sometimes called key-based routing. 

Beyond basic routing correctness, two important constraints on the topology are to guarantee that 
the maximum number of hops in any route (route length) is low, so that requests complete quickly; 
and that the maximum number of neighbors of any node (maximum node degree) is low, so that 
maintenance overhead is not excessive. Of course, having shorter routes requires higher maximum 
degree. Some common choices for maximum degree and route length are as follows, where n is the 
number of nodes in the DHT, using Big O notation (see Table 3-1): 

¶ Degree O(1), route length O(n) 

¶ Degree O(logn), route length O(logn / loglogn) 

¶ Degree O(logn), route length O(logn) 

¶ Degree O(Ѝὲ), route length O(1) 

The third choice is the most common even though it is not quite optimal in terms of degree/route 
length tradeoff, because such topologies typically allow more flexibility in choice of neighbors. Many 
DHTs use that flexibility to pick neighbors which are close in terms of latency in the physical 
underlying network. 

Maximum route length is closely related to diameter: the maximum number of hops in any shortest 
path between nodes. Clearly the network's route length is at least as large as its diameter, so DHTs 
are limited by the degree/diameter trade off which is fundamental in graph theory. Route length can 
be greater than diameter since the greedy routing algorithm may not find shortest paths. 

2.2.3.3 Variations of diverse Implementations 

The most notable differences encountered in practical instances of DHT implementations are 
discussed below. First of all, several real world DHTs use 128 bit or 160 bit keyspace. Furthermore, 
some real-world DHTs use hash functions other than SHA1. Additionally, in the real world the key k 
could be a hash of a file's content rather than a hash of a file's name, so that renaming of the file 
does not prevent users from finding it. 

Moreover, some DHTs may also publish objects of different types. For example, key k could be node 
ID and associated data could describe how to contact this node. This flexibility allows publication of 
presence information and is often used in Instant Messaging applications, etc. In simplest case ID is 
just a random number which is directly used as key k (so in a 160-bit DHT ID will be a 160 bit number, 
usually randomly chosen). In some DHTs publishing of nodes IDs is also used to optimize DHT 
operations. 

Redundancy can be added to improve reliability. The (k,data) key pair can be stored in more than 
one node corresponding to the key. Usually, rather than selecting just one node, real world DHT 
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algorithms select i suitable nodes, with i being an implementation-specific parameter of the DHT. In 
some DHT designs, nodes agree to handle a certain keyspace range, the size of which may be chosen 
dynamically, rather than hard-coded. 

Some advanced DHTs like Kademlia [11]  perform iterative lookups through the DHT first, in order to 
select a set of suitable nodes and send put(k,data) messages only to those nodes, thus drastically 
reducing useless traffic, since published messages are only sent to nodes which seem suitable for 
storing the key k; and iterative lookups cover just a small set of nodes rather than the entire DHT, 
reducing useless forwarding. In such DHTs forwarding of put(k,data) messages may only occur as 
part of a self-healing algorithm: if a target node receives a put(k,data) message but believes that k is 
out of its handled range and a closer node (in terms of DHT keyspace) is known, the message is 
forwarded to that node. Otherwise, data are indexed locally. This leads to a somewhat self-balancing 
DHT behavior. Of course, such an algorithm requires nodes to publish their presence data in the DHT 
so the iterative lookups can be performed. 

2.3 Difficulties in maintaining a distributed key -value store in Mesh 
Environments  

In chapter 2.1 the principles of DHTs and the merits that are derived from them were presented. 
However, DHTs are designed to operate on the Internet environment and not on a Mesh 
environment. More specifically, the assumptions that are made by the majority of DHT 
implementations which are met by the Internet environment are the following: 

Efficient underlay routing & efficient connection establishment: e.g. assume that a newnode enters 
the overlay in a Chord DHT implementation between node1 and node2 (we remind the reader that 
Chords uses a circular overlay topology). Since new segments have been formulated i.e. node1-
newnode&newnode-node2, specific key-value entries have to be transferred from node2 to 
newnode. This transfer has to be done efficiently without a big communication start-up cost since a 
possible query for a specific key k in the structure may end-up at node1. If newnode is the 
corresponding node according to the consistent hashing function, node1 will consult its finger table 
and will propagate the query to newnode. Consequently, newnode should be ready to respond to 
the query performer as quick as possible in order to prevent blocking issues. 

Long lasting connections& stationary peers: assume that in the example described above, newnode 
ŜƴǘŜǊǎ ŀƴŘ ƭŜŀǾŜǎ ǘƘŜ ǘƻǇƻƭƻƎȅ ƛƴǎǘŀƴǘƭȅΦ ¢Ƙƛǎ ǿƻǳƭŘ ƴƻǘ ōŜ ŎŀǘŀǎǘǊƻǇƘƛŎ ŦƻǊ ǘƘŜ 5I¢ ǎǘǊǳŎǘǳǊŜΩǎ 
coherency (since mechanisms that handle timeouts during key-value transfers exist) but it would 
generate a signaling cost both in the network and the overlay layer. This cost may be insignificant in 
fixed networks since a predefined routing scheme exists (see below) but in a Mesh Environment it 
would be too expensive. 

Hierarchical routing scheme: Assume that in the example described above, node2 is notified that 
specific key-value pairs must be transferred to newnode. However, node2 is not aware on how new 
node will be reached (i.e. it is not a concern of node2)Σ ǎƛƴŎŜ LƴǘŜǊƴŜǘΩǎ ƘƛŜǊŀǊŎƘƛŎŀƭ ǎǘǊǳŎǘǳǊŜ ƛƳǇƭƛŜǎ 
that the transferable key-value entry(ies) will be routed to node2Ωǎ ŘŜŦŀǳƭǘ ƎŀǘŜǿŀȅ ŀƴŘ ǘƘǊƻǳƎƘ 
TCP/IP entries will reach their destination. 

Dedicated peers: As explained above, the task of overlay topology construction and maintenance is 
undertaken by low level mechanisms which in most of the cases are centralized or semi-centralized. 
Indicatively, such mechanisms are used in the Gnutella network [12] , in which topology creation 
may be achieved by using a pre-defined address-list of working nodes included within a compliant 
client or by using web caches of known nodes, a.k.a. Gnutella web caches. Similarly, Chord pre-
assumes that nodes are ordered in a ring and are aware of their successor and predecessor in the 
overlay ring topology. Chord also relies on underlying mechanisms for the overlay network 
bootstrapping [13] . In fact, p2p protocols are able to react to topology changes (and automatically 
re-assign key-value pairs) but are not responsible for creating and maintaining the overlay topology. 
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This indicative issue, among others, is delegated to some super-peers that are also accessible due to 
the hierarchical routing scheme. 

Stable network: Stable network refers to the backbone network and not to the endpoints that 
constitute the DHT peers. A stable backbone network ensures the efficiency of the hierarchical 
routing scheme and prevents island formulation. In order to clarify this issue, assume that in the 
example of a dynamic network topology - newnode is connected to node2 through a unique valid 
route e.g. newnode-nodex-nodey-node2 and the connection between nodex and nodey during key-
value pair transfer is lost. This would result in the formulation of two islands consisting of i) island 
1:newnode, nodex and all their local neighbors and ii) island 2: nodey, node2 and all their local 
neighbors. 

It is obvious that none of the aforementioned assumptions can be considered as granted in a Mesh 
environment. Nodes are not stationary and links are considered unreliable (see Figure 2.4). 
Moreover, there is no form of centralization and no dedicated peer in order to coordinate overlay 
construction. Consequently, the construction and maintenance of the overlay must be accomplished 
in an ad-hoc mode.  

 

 

Figure 2.4 Mesh Networking Environment 

 

Furthermore, low level routing among nodes is an important issue since no predefined routing 
scheme can be taken for granted. Therefore, alternative routing policies have to be adopted. Such 
routing protocols will be described at chapter 4.2.3.  

Finally, the most critical problem is the lack of topological hierarchy which results in loosely 
temporarily created graphs. Such graphs (a.k.a. islands) of interconnected nodes may merge and split 
according to the current topology. This affects significantly the DHT operation. E.g. assume that in 
two existing separate islands, as depicted at Figure 2.5,the Chord protocol has bootstrapped. The 
mechanisms that have been used by Chord to bootstrap do not work in this example. According to 
Chord all participant nodes are directed to circular overlay topology for both islands. Assume that 
one node from one island committed put(key1,valuex) and another node from the other island 
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committed in his circle/DHT put(key1,valuey). In the next step, the nodes that comprise the two 
islands come closer and formulate one big island (see Figure 2.6). 

 

 

Figure 2.5 Two islands before they merge 

 

Figure 2.6 Two islands already merged 

 

The goal that has to be achieved after merging is the efficient identification of the responsible node 
that maintains the value of key1 after the query of a third-party node. Normally, according to the 
DHT consistency principle, values should be merged and a possible get(key1) should result in the 
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multi-value response valuex-valuey. However, a successful response pre-assumes that DHT signaling 
has been completed. On the other hand signaling is of minor importance for DHTs that are 
bootstrapped on fixed networks but it is considered too expensive for Mesh Environments. 

Moreover, node-splitting is a scenario where DHT consistency is not guaranteed. E.g. assume that 
the big island of Figure 2.6 splits in two sub-islands of Figure 2.5. Suppose that a specific key1-valuex 
pair is published, the DHT protocol is Chord and the HashOf(key1)=130. According to Chord algorithm 
the responsible node for storing this pair is the successor node of 130 i.e. node 140 in our case. It 
must be clarified here, that node 140 actually means node with HashOf(NodeID)=140 where NodeID 
is something common among the nodes e.g. their MAC address. According to the splitting scenario, 
ǘƘŜ ǇƘȅǎƛŎŀƭ ǘƻǇƻƭƻƎȅ ƛǎ ǎǇƭƛǘ ŀƴŘ ƴƻŘŜ мпл ōŜƭƻƴƎǎ ǘƻ ǘƘŜ ΨōƭǳŜΩ ƛǎƭŀƴŘΦ bƻǿ ǘƘŜ ǉǳŜǎǘƛƻƴ ƛǎ ǿƘŀǘ ǿƛƭƭ 
the result be when nodŜ ΩтфΩ ŦǊƻƳ ǘƘŜ ƻǊŀƴƎŜ ƛǎƭŀƴŘǎ ŎƻƳƳƛǘǎ get(key1)? The answer is null since in 
ǘƘŜ ΨƻǊŀƴƎŜΩ ƛǎƭŀƴŘ ǘƘŜ ŀǳǘƘƻǊƛǘŀǘƛǾŜ ƴƻŘŜ ŦƻǊ ǇǊƻǾƛŘƛƴƎ ǘƘŜ ǊŜǎǇƻƴǎŜ ƛǎ ƴƻŘŜ мфл όƛΦŜΦ ǘƘŜ ǎǳŎŎŜǎǎƻǊ 
of 130). Node 190 has no info about key1. 

Similarly, assume that during put(key1,valuex) (and before splitting up) there was a redundancy policy 
and the key-value pair was stored to its successor and to the next node (one node for redundancy). 
After the split-ǳǇΣ ǿƘŜƴ ƴƻŘŜ ΩтфΩ ŦǊƻƳ ǘƘŜ ƻǊŀƴƎŜ ƛǎƭŀƴŘǎ ŎƻƳƳƛǘǎ get(key1), the result would be 
valuex. So, redundancy is the key parameter as far as network splitting is concerned. Consequently, 
merging and splitting, in general, results in significant signaling cost on Mesh environments. 
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3. 3ÔÁÔÅ ÏÆ ÔÈÅ ÁÒÔ ÁÎÁÌÙÓÉÓ ÏÎ $(4 ÓÔÒÕÃÔÕÒÅÓ ÏÎ ÔÏÐ ÏÆ -ÅÓÈ 
4ÏÐÏÌÏÇÉÅÓ 

3.1 Comparison of dominant DHT implementations  

As already described, DHTs belong to the category of structured peer to peer systems according to 
which the location information of data-object is placed deterministically at a specific peer identified 
ōȅ ǘƘŜ Řŀǘŀ ƻōƧŜŎǘΩǎ ǳƴƛǉǳŜ ƪŜȅΦ 5I¢-based systems have the advantage of consistent assignment of 
data-objects to the nodes that constitute the network. 

As it is clarified up to now, data objects are assigned unique identifiers called keys, chosen from the 
same identifier space. Keys are mapped by the overlay network protocol to a unique live peer in the 
overlay network. The P2P overlay networks support the scalable storage and retrieval of {key,value} 
pairs on the overlay network, as illustrated in Figure 3.1. Given a key, a store operation 
put(key,value)and a lookup retrieval operation value=get(key) can be invoked to store and retrieve 
the data object corresponding to the key, which involves routing requests to the peer corresponding 
ǘƻ ǘƘŜ ƪŜȅΦ 9ŀŎƘ ǇŜŜǊ Ƴŀƛƴǘŀƛƴǎ ŀ ǎƳŀƭƭ ǊƻǳǘƛƴƎ ǘŀōƭŜ ŎƻƴǎƛǎǘƛƴƎ ƻŦ ƛǘǎ ƴŜƛƎƘōƻǊƛƴƎ ǇŜŜǊǎΩ bƻŘŜL5ǎ 
and network addresses. In the case of MESH networks, centralized routing protocols cannot be 
utilized. Lookup queries or message routing requests are forwarded across overlay paths to peers in 
a progressive manner utilizing the NodeIDs that are closer to the key in the identifier space. 

 

 

Figure 3.1 Application Interface for Structured DHT-based P2P Overlay Systems 

 

Different DHT-based systems have different organization schemes for the data objects and 
their key space and routing strategies. In theory, DHT-based systems can guarantee that any data 
object can be located in O(logN ) overlay hops on average, where N is the number of peers in the 
system. The underlying network path between two peers can be significantly different from the path 
on the DHT-based overlay network. Therefore, the lookup latency in DHT-based P2P overlay 
networks can be quite high and could adversely affect the performance of the applications running 
over it. [14] provides an elegant algorithm that achieves nearly optimal latency on graphs that exhibit 
power-law expansion [15] , at the same time, preserving the scalable routing properties of the DHT-
based system.  

DHT-based systems [10] are an important class of P2P routing infrastructures. They support the rapid 
development of a wide variety of Internet-scale applications ranging from distributed file and naming 
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systems to application-layer multicasting. They also enable scalable, wide-area retrieval of shared 
information. In 1999, Napster pioneered the idea of a peer-to- peer file sharing system supporting a 
centralized file search facility. It was the first system to recognize that requests for popular content 
need not to be sent to a central server but instead it could be handled by many peers that have the 
requested content. Such P2P file-sharing systems are self-scaling in that as more peers join the 
system, they add to the aggregate download capability. Napster achieved this self-scaling behavior 
by using a centralized search facility based on file lists provided by each peer, thus, it does not require 
much bandwidth for the centralized search. Such a system has the issue of a single point of failure 
due to the centralized search mechanism. However, a lawsuit filed by the Recording Industry 
Association of America (RIAA) forced Napster to shut down the file-sharing service of digital music 
τ literally, its killer application.  

However, the paradigm caught the imagination of platform providers and users alike. Gnutella is a 
ŘŜŎŜƴǘǊŀƭƛȊŜŘ ǎȅǎǘŜƳ ǘƘŀǘ ŘƛǎǘǊƛōǳǘŜǎ ōƻǘƘ ǎŜŀǊŎƘ ŀƴŘ ŘƻǿƴƭƻŀŘǎΩ ŎŀǇŀōƛƭƛǘƛŜǎΣ ŜǎǘŀōƭƛǎƘƛƴƎ ŀƴ 
overlay network of peers. It is the first system that makes use of an Unstructured P2P overlay 
network. An Unstructured P2Psystem is composed of peers joining the network with some loose 
rules, without any prior knowledge of the topology. The network uses flooding as the mechanism to 
send queries across the overlay with a limited scope. When a peer receives the flood query, it sends 
a list of all content matching the query to the originating peer. While flooding-based techniques are 
effective for locating highly replicated items and are resilient to peers joining and leaving the system, 
they are poorly suited for locating rare items. Clearly this approach is not scalable as the load on 
each peer grows linearly with the total number of queries and the system size. Thus, Unstructured 
P2P networks face one basic problem: peers readily become overloaded, therefore, the system does 
not scale when handling a high rate of aggregate queries and sudden increase in system size. 

Although Structured P2P networks can efficiently locate rare items since the key-based routing is 
scalable, they incur significantly higher overheads than Unstructured P2P networks for popular 
content. Consequently, over the Internet today, the decentralized Unstructured P2P overlay 
networks are more commonly used. However, there are recent efforts on Key-based Routing (KBR) 
API abstractions [16]  that allow more application-specific functionality to be built over this common 
basic KBR API abstractions, and OpenHash (Open publicly accessible DHT service) [17] that allows the 
unification platform of providing developers with basic DHT service models that runs on a set of 
infrastructure hosts, to deploy DHT-based overlay applications without the burden of maintaining a 
DHT and with ease of use to spur the deployment of DHT-based applications.  

In contrast, Unstructured P2P overlay systems are Ad-Hoc in nature, and do not present the 
possibilities of being unified under a common platform for application development. In Table 3-1, 
we will describe the key features of Structured P2P and Unstructured P2P overlay networks and their 
operational functionalities. After providing a basic understanding of the various overlays schemes in 
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these two classes, an evaluation of these schemes is provided [18] followed by some comparative 
results based on the following attributes: 

¶ Decentralization: examine whether the overlay system is distributed. 

¶ Architecture: describe the overlay system architecture with respect to its operation. 

¶ Lookup Protocol: the lookup query protocol adopted by the overlay system. 

¶ System Parameters: the required system parameters for the overlay system operation. 

¶ Routing Performance: the lookup routing protocol performance in overlay routing. 

¶ Routing State: the routing state and scalability of the overlay system. 

¶ Peers Join and Leave: describe the behavior of the overlay system when churn and self-
organization occurred. 

¶ Security: look into the security vulnerabilities of overlay system. 

¶ Reliability and Fault Resiliency: examine how robust the overlay system when subjected to 
faults. 

Although all protocols that are discussed in Table 3-1 are candidate ones for being adopted in 
PrEstoCloud Cloud, the architectural simplicity of Chord along its good performance under mobility 
scenarios [19] urged us to select it as the cornerstone for implementation.  
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Table 3-1 Comparison of Structured P2P approaches 

Algorithm 

Taxonomy 

Structured P2P Overlay Network Comparisons 

CAN Chord Tapestry Pastry Kademlia Viceroy 

Decentralization DHT functionality on Internet-like scale 

Architecture Multi-dimensional 

ID coordinate space. 

Uni-directional and 

Circular NodeID 
space. 

Plaxton-style 
global mesh 
network. 

Plaxton-style global 

mesh network. 

XOR metric for 
distance 

between points 

in the key space. 

Butterfly network 

with connected ring 

of predecessor and 

successor links, data 

managed by servers. 

Lookup Protocol key,value pairs to 

map a point P in 

the coordinate space 

using uniform hash 

function. 

Matching Key and 

NodeID. 

Matching suffix in 

NodeID. 

Matching Key and 

prefix in NodeID. 

Matching Key and 

Node-ID based 
routing. 

Routing through levels 

of tree until a 

peer is reached with 

no downlinks; vicinity 

search performed 

using ring and level ring 
links. 

System 
Parameters 

N-number of peers 

in network d-number 

of dimensions. 

N-number of peers 

in network. 

N-number of peers 

in network B-base 
of 

the chosen peer 
identifier. 

N-number of peers 

in network b-number 

of bits (B = 2b) used 

for the base of the 

chosen identifier. 

N-number of peers 

in network b-number 

of bits ((B = 2b) of 

NodeID. 

N-number of peers 

in network. 

Routing 

Performance ὕὨȢὔ  ὕὰέὫὔ ὕÌÏÇὔ  ὕÌÏÇὔ  

ὕÌÏÇὔ  ὧ 
where 

c = small constant  

ὕὰέὫὔ 
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Routing State ςὨ ὰέὫὔ ÌÏÇὔ ὄÌÏÇὔ ὄÌÏÇὔ ὄÌÏÇὔ ὄ ὰέὫὔ 

Peers Join/Leave ςὨ ὰέὫὔ ÌÏÇὔ ÌÏÇὔ 
ÌÏÇὔ  ὧ where 

c = small constant  
ὰέὫὔ 

Security Low level. Suffers from man-in-middle and Trojan attacks. 

Reliability/Fault 

Resiliency 

Failure of peers will 

not cause network 
wide failure. Multiple 

peers responsible 

for each data item. 

On failures, 
application 

retries. 

Failure of peers 

will not cause 

network-wide 
failure. 

Replicate data on 

multiple consecutive 

peers. On failures, 

application retries. 

Failure of peers 

will not cause 

network-wide 
failure. Replicate 
data across 
multiple peers. 
Keep track of 
multiple paths 

Failure of peers 

will not cause 

network-wide failure. 

Replicate data across 

multiple peers. Keep 

track of multiple 

paths to each peer. 

Failure of peers will 

not cause network 
wide 

failure. Replicate 

data across multiple 

peers. 

Failure of peers will 

not cause network wide 
failure. Load incurred by 
lookups routing evenly 

distributed among 

participating lookup 
servers. 
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3.2 Chord protocol in a more detailed view  

Chord [4] uses consistent hashing [10] to assign keys to its peers. Consistent hashing is designed to let peers 
enter and leave the network with minimal interruption. This decentralized scheme tends to balance the load 
on the system, since each peer receives roughly the same number of keys, and there is little movement of 
keys when peers join and leave the system. In a steady state, for N peers in the system, each peer maintains 
routing state information for about only O(logN) other peers (N number of peers in the system). This may be 
efficient but performance degrades gracefully when that information is out-of-date. 

The consistent hash functions assign peers and data keys an m-bit identifier using SHA-1 [20] as the base 
ƘŀǎƘ ŦǳƴŎǘƛƻƴΦ ! ǇŜŜǊΩǎ ƛŘŜƴǘƛŦƛŜǊ ƛǎ ŎƘƻǎŜƴ ōȅ ƘŀǎƘƛƴƎ ǘƘŜ ǇŜŜǊΩǎ Lt ŀŘŘǊŜǎǎΣ ǿƘƛƭŜ ŀ ƪŜȅ ƛŘŜƴǘƛŦƛŜǊ ƛǎ ǇǊƻŘǳŎŜŘ 
by hashing the data key. The length of the identifier ΨƳΩ must be large enough to make the probability of keys 
hashing to the same identifier negligible. Identifiers are ordered on an identifier circle modulo 2m.Key k is 
assigned to the first peer whose identifier is equal to or follows k in the identifier space. This peer is called 
the successor peer of key k, denoted by successor(k). If identifiers are represented as a circle of numbers 
ŦǊƻƳ л ǘƻ нƳ ҍ мΣ ǘƘŜƴ ǎǳŎŎŜǎǎƻǊόƪύ ƛǎ ǘƘŜ ŦƛǊǎǘ ǇŜŜǊ ŎƭƻŎƪǿƛǎŜ ŦǊƻƳ ƪΦ 

The identifier circle is termed as the Chord ring. To maintain consistent hashing mapping when a peer n joins 
the network, certain keys previously assigned to nΩǎ ǎǳŎŎŜǎǎƻǊ ƴƻǿ ƴŜŜd to be reassigned to n. When peer n 
ƭŜŀǾŜǎ ǘƘŜ /ƘƻǊŘ ǎȅǎǘŜƳΣ ŀƭƭ ƻŦ ƛǘǎ ŀǎǎƛƎƴŜŘ ƪŜȅǎ ŀǊŜ ǊŜŀǎǎƛƎƴŜŘ ǘƻ ƴΩǎ ǎǳŎŎŜǎǎƻǊΦ ¢ƘŜǊŜŦƻǊŜΣ ǇŜŜǊǎ Ƨƻƛƴ ŀƴŘ 
leave the system with (logN)2 performance (i.e. exchanged messages). No other changes of keys assignment 
to peers need to occur. In Figure 3.2(adapted from [4]), the Chord ring is depicted with m = 6. This particular 
ring has ten peers and stores five keys. The successor of the identifier 10 is peer 14, so key 10 will be located 
at NodeID 14. Similarly, if a peer were to join with identifier 26, it would store the key with identifier 24 from 
the peer with identifier 32. 

Each peer in the Chord ring needs to know how to contact its current successor peer on the identifier circle. 
Lookup queries involve the matching of key and NodeID. For a given identifier, queries could be applied 
around the circle via these successor pointers until they encounter a pair of peers that include the desired 
identifier; the second peer in the pair is the peer the query maps to. An example is presented in Figure 3.2, 
whereby peer 8 performs a lookup for key 54. Peer 8 invokes the find successor operation for this key, which 
eventually returns the successor of that key, i.e. peer 56. The query visits every peer on the circle between 
peer 8 and peer 56. The response is returned along the reverse of the path. 

As m is the number of bits in the key/NodeID space, each peer n maintains a routing table with up to m 
entries, called the finger table. The ith entry in the table at peer n contains the identity of the first peer s that 
it least 2ƛҍм positions after n on the identifier circle, i.e. s = successor(n + 2ƛҍм ύΣ ǿƘŜǊŜ м Җ ƛ Җ ƳΦ tŜŜǊ ǎ ƛǎ ǘƘŜ 
ith finger of peer n (n.finger[i]). A finger table entry includes both the Chord identifier and the IP address (and 
port number) of the relevant peer.  

Figure 3.2 shows the finger table of peer 8, and the first finger entry for this peer points to peer 14, as the 
latter is the first peer that succeeds (8+20) mod 26 = 9. Similarly, the last finger of peer 8 points to peer 42, 
i.e. the first peer that succeeds (8 + 25) mod 26 = 40. In this way, peers store information about only a small 
number of other peers, and know more about peers closely following it on the identifier circle than other 
peers. Also, a ǇŜŜǊΩǎ ŦƛƴƎŜǊ ǘŀōƭŜ ŘƻŜǎ ƴƻǘ Ŏƻƴǘŀƛƴ ŜƴƻǳƎƘ ƛƴŦƻǊƳŀǘƛƻƴ ǘƻ ŘƛǊŜŎǘƭȅ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ǎǳŎŎŜǎǎƻǊ ƻŦ 
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an arbitrary key k. For example, peer 8 cannot determine the successor of key 34 by itself, as successor of 
ǘƘƛǎ ƪŜȅ όǇŜŜǊ оуύ ƛǎ ƴƻǘ ǇǊŜǎŜƴǘ ƛƴ ǇŜŜǊ уΩǎ ŦƛƴƎŜǊ table. 

 

 

Figure 3.2 Chord Ring of 10 peers and 5 key-value pairs. 

 

When a peer joins the system, the successor pointers of some peers need to be changed. It is important that 
the successor pointers are up to date at any time because the correctness of lookups is not guaranteed 
otherwise. The Chord protocol uses a stabilization protocol [4] running periodically in the background to 
update the successor pointers and the entries in the finger table. The correctness of the Chord protocol relies 
on the fact that each peer is aware of its successors. When peers fail, it is possible that a peer does not know 
its new successor and it has no chance to learn about it. To avoid this situation, peers maintain a successor 
list of size r, which cƻƴǘŀƛƴǎ ǘƘŜ ǇŜŜǊΩǎ ŦƛǊǎǘ r successors. 

When the successor peer does not respond, the peer simply contacts the next peer on its successor list. 
Assuming that peer failures occur with a probability p, the probability that every peer on the successor list 
will fail is pr. Increasing r makes the system more robust. By tuning this parameter, any degree of robustness 
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with good reliability and fault resiliency may be achieved. The following applications are examples of how 
Chord could be used: 

¶ Cooperative mirroring or Cooperative File System (CFS) [21], in which multiple providers of content 
ŎƻƻǇŜǊŀǘŜ ǘƻ ǎǘƻǊŜ ŀƴŘ ǎŜǊǾŜ ŜŀŎƘ ƻǘƘŜǊǎΩ ŘŀǘŀΦ {ǇǊŜŀŘƛƴƎ ǘƘŜ ǘƻǘŀƭ ƭƻŀŘ ŜǾŜƴƭȅ ƻǾŜǊ ŀƭƭ ǇŀǊǘƛŎƛǇŀƴǘ 
hosts lowers the total cost of the system, since each participant needs to provide capacity only for 
the average load, not for the peak load. There are two layers in CFS. The DHash (Distributed Hash) 
layer performs block fetches for the peer, distributes the blocks among the servers, and maintains 
cached and replicated copies. The Chord layer distributed lookup system is used to locate the servers 
responsible for a block. 

¶ Chord-based DNS [22]  provides a lookup service, with host names as keys and IP addresses (and 
other host information) as values. Chord could provide a DNS-like service by hashing each host name 
to a key [10]. Chord-based DNS would require no special servers, while ordinary DNS systems rely on 
a set of special root servers. DNS also requires manual management of the routing information (DNS 
records) that allows clients to navigate the name server hierarchy; Chord automatically maintains 
the correctness of the analogous routing information. DNS only works well when host names are 
hierarchically structured to reflect administrative boundaries; Chord imposes no naming structure. 
DNS is specialized to the task of finding named hosts or services, while Chord can also be used to find 
data object values that are not tied to particular machines. 

 

3.3 Chord protocol on top of a dynamic network  topology  

The PrEstoCloud proposed approach aims at the provision of a generic framework that will facilitate the 
design and development of autonomic and decentralized services in Mesh networks (see Figure-4.1). The 
introduction of the different layers of the proposed approach is necessary due to the need to address the 
following challenges: a) efficiently utilize available network resources in a dynamic environment, b) provide 
services independently from the underlying topology, c) ensure reliability of services in case of network 
topology changes and d) reduce the management complexity and increase flexibility to application 
developers. In order to address these challenges, autonomic functionalities have to be incorporated. The 
following self-* properties have been defined [23]  and should be supported by an autonomic system: self-
configuration, self-optimization, self-awareness and self- healing.  

Existing protocols that satisfy partially the challenges described above were considered during the design of 
the proposed approach. There is no existing work on how to combine existing protocols for achieving 
autonomic service provisioning and how different protocols could interact using predefined interfaces. 
Taking into account these considerations, the proposed approach is focusing on a) defining concrete layering 
for enabling autonomic service provisioning in Mesh networks, b) specifying the discrete functionality of each 
layer and the interfaces between them and c) resolving conflicts between existing protocols, specifically in 
the field of the overlay topology construction. 

The creation and maintenance of an overlay topology that logically interconnects all the participating nodes 
in the physical network is critical in our approach. Any node that connects to the ad-hoc network has to join 
to the overlay network. The overlay network is formulated during the topology stabilization phase in an 
autonomic manner and hides any details of the underlying physical infrastructure, e.g. link establishment or 
torn down, node failures, node mobility, etc. In case of multiple changes in the physical topology, the overlay 
network is able to adapt quickly to the new environment (re-stabilization). Furthermore, recovery from 
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failures can be easily achieved based on information that is available in the network. All these tasks are 
realized without the intervention of the network administrator. 

 

Figure 3.3 Services that rely on an operational DHT in dynamic environment 

 

After the overlay network is established, participating nodes are able to store and retrieve data using typical 
p2p protocols. Every node that wishes to store a keyvalue- pair, or query a value based on a key, can achieve 
it by using a Distributed Hash Table (DHT) [24] that operates on-top of the overlay topology. In a similar way, 
several applications can be built taking under consideration the existence of a high level API put(key,value) 
and get(key) that would interact with a DHT protocol that operates on-top of a non-reliable Mesh 
environment.  

Provided services are designed based on the assumption of collaboration and dissemination of information 
among the participating nodes. These services can be fully decentralized as data and functionality is allocated 
in different nodes at the overlay network. Some functions may be delegated to more than one nodes for 
higher reliability. In case of changes or failures, roles may be re-assigned autonomously and performance 
guarantees may be assured for the services provision. 

We propose a four-layered scheme based on the functionality requirements imposed by the provided 
services and the underlying physical networking environment. As shown in Figure-4.2, the following four 
layers are defined; i) Neighbor-to-Neighbor layer, ii) Routing layer, iii) Topology Maintenance layer, and iv) 
DHT layer. Each layer has a discrete role, implements different mechanisms and specifies its messages types. 
The proposed layered approach is independent from the selection of p2p protocols, topology formulation 
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mechanisms and routing protocols. Therefore, any combination of different protocols may be selected and 
proper adaptations may be proposed. 

 

 

Figure 3.4 Four-Layered Approach 

The Neighbor-to-Neighbor layer is responsible for delivering an upper-layer frame from a neighbor to another 
neighbor. No information from the upper layer is necessary for the delivery. Two types of messages are used; 
i) MAC_SEND in order to achieve one way frame delivery from neighbor X to neighbor Y and ii) MAC_ACK in 
order to achieve acknowledgment for successful message-delivery from neighbor Y back to neighbor X. Also, 
this layer is responsible for maintaining (i.e. initializing and keeping up-to-date) the routing cache of the 
Routing layer since, when neighbor-to-neighbor links are created or destroyed, the related routing 
information has to be updated. 

The Routing layer is responsible for delivering an upper-layer frame from a node X to another node Z. It is 
assumed that node X is not aware how node Z can be reached. The layer is also agnostic of the reason that 
node X wants to communicate with node Z. This layer relies on routing protocol for frame forwarding across 
the network. As we stated in section 3.3, in case of Mesh Environments it is suggested the use of a dynamic 
routing protocol (will be covered in chapter 4). 

The Topology Maintenance layer is responsible for formulating a virtual topology of the participating nodes. 
In our case, the desired topology is a ring (imposed by the use of Chord). Consequently, this layer undertakes 
the task of identifying the relative position of each node in the overlay topology without being based in 
centralized or semi-centralized techniques. 

The DHT layer is responsible for maintaining a distributed hash table that is bootstrapped over the stabilized 
overlay topology. For this purpose any existing DHT protocol may be used. These protocols are (semi or fully) 
decentralized and -in addition to storage and retrieval functionality- may succeed load balancing, reduce 
bandwidth consumption and improve data reliability across the network. The following interfaces have been 
defined for the communication among the different layers: 

¶ The Neighbor-to-Neighbor layer provides to the Routing layer routing information for existing 
neighbors that is stored in the routing cache of each node, through the validateRoutingCaches() 
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function. The Neighbor-to-Neighbor layer provides also medium-level acknowledgments to the 
Routing layer for neighbor-to-neighbor communication, through the transfer_Packet() function. 

¶ The Routing layer provides routing functionality to upper layers through the routePacket() function. 
Additionally, it exposes topology information derived directly from the routing caches to the 
Topology Maintenance layer, through the getRoutingInfo() function. It is up to the Topology 
Maintenance layer to utilize this information for optimizing its mechanisms or not. 

¶ The Topology Maintenance layer provides information to the DHT layer regarding the relative 
position of a node in the overlay network (e.g. the predecessor and successor in case of a ring 
topology) through the getRelativePosition() function. In case of changes in the network topology, 
stabilization procedures take place in both layers. The Topology_Stabilize() function is used for re-
ordering the overlay topology (e.g. ring in our case) and triggers the DHT_Stabilize() function that is 
used for the re-assignment of key-value pairs that are assigned in the overlay network nodes. 

 

Figure 3.5 Overlay Topology stabilization & DHT entries stabilization 

In Figure-4.3, a snapshot of the physical network topology (solid lines) and the logical overlay topology 
(dashed lines with arrows) is depicted. Initially, node 3 does not exist in the network and the key-value pairs 
have already been assigned to the network nodes by applications that run on the existing nodes (i.e. 
applications that use DHT). Then, node 3 is physically connected with node 1 and node 4 and the 
corresponding overlay topology is updated. It is the responsibility of Topology Maintenance layer to find the 
ǎǳŎŎŜǎǎƻǊ ŦƻǊ ŜŀŎƘ ƴƻŘŜΦ IƻǿŜǾŜǊΣ ƛǘ ƛǎ ƴƻǘ ǘƘŜ ¢ƻǇƻƭƻƎȅ aŀƛƴǘŜƴŀƴŎŜ ƭŀȅŜǊΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ ǘƻ ǊŜ-assign key-
ǾŀƭǳŜǎ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ 5I¢Ωǎ ŀǎǎƛƎƴƳŜƴǘ ŀƭƎƻǊƛthm.  

The Topology Maintenance layer must inform the DHT layer that the relative position for the node in the 
overlay topology (e.g. ring in case of Chord) has changed. Then it is up to DHT layer to reassign key-value 
pairs. This re-assignment will be addressed as DHT re-stabilization while the updated knowledge for the 
relative position in the overlay topology is called Topology stabilization. 
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4. 0Ò%ÓÔÏ#ÌÏÕÄ $ÅÖÉÃÅ 3ÔÁÃË  

4.1 Layers of the PDK 

Based on Figure 3.4 the following stack has been proposed to handle efficiently edge resources. 

 

 

Figure 4.1 Granular View of the PrEstoCloud stack 

 

An overview of each layer will be provided following a bottom up approach. In the lowest part of the stack 
we have a hardware dependency. More specifically, an 802.11s-enabled card should exist. The reason for 
that is that 802.11s is one of the latest standards that are accepted by the 802.11s standardization group 
that offers native mesh networking capabilities. At this point it should be clarified that, in the frame of 
PrEstoCloud, mesh-networking should not be confused with ad-hoc networking. In the ad-hoc networking 
paradigm only single hop-connectivity is supported; hence all participating nodes should be reachable. In the 
mesh paradigm, multi-hop links are supported i.e. one node can be linked with two nodes that do not have 
reachability among them. This difference is also depicted on Figure 4.2. In the frame of PrEstoCloud ad-hoc 
capabilities are not enough since they support only single-hop communications. 

The mesh networking standard is not supported by the majority of the commercial wi-fi adapters. The reader 
is prompted to visit the [ƛƴǳȄ YŜǊƴŜƭ ²ƛǊŜƭŜǎǎ 5ǊƛǾŜǊǎΩ ǇŀƎŜ8 where the capabilities of each driver is listed. As 
it can be seen (Figure 4.3) a limited set of drivers are developed that include the specific networking 
capability. In the frame of our testbed we used rt2800usb9 driver because of its compatibility in IoT devices. 

                                         

8 https://wireless.wiki.kernel.org/en/users/drivers  

9 https://wireless.wiki.kernel.org/en/users/drivers/rt2500usb 

https://wireless.wiki.kernel.org/en/users/drivers
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Figure 4.2 Mesh mode vs Ad-hoc mode 

 

Figure 4.3 Mesh support by existing drivers 

 

In addition to the usage of a mesh-enabled hardware device, a proper OS kernel has to be used that is able 
to interact with the mesh-capable device. The kernel that is widely used is called open80211s10 and most of 
the modern kernels are built with this module already integrated. Since the IoT devices that will be used in 

                                         

10 https://github.com/o11s/open80211s/wiki/HOWTO  

 

https://github.com/o11s/open80211s/wiki/HOWTO


PrEstoCloud GA 732339 Deliverable D3.9 

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò 

 

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ 

    33 

our pilots are Raspberry11-based we decided to use Linux kernel 4.4+ which is used in all compatible operating 
systems i.e. Raspbian12, Ubuntu Core13, Ubuntu Mate14. 

The ability to have mesh-level communication is a prerequisite for edge device to edge device 
communication. However, layer-3 communication per se is not guaranteed by 802.11s protocol since the 
protocol is a pure layer-2 link management protocol. In order to achieve IP-based communication a routing 
layer must be established. A routing layer cannot relay on a traditional centralized gateway that maintains 
routing tables since the topology in a mesh environment is rapidly changing. On top of that, the IP assignment 
cannot be static i.e. in case a new node arrives it should not consult the existing ones which IPs are reserved 
in order to perform an initial assignment. This would not scale. These problems are addressed as dynamic 
routing and IP assignment problem. 

Both of these problems have been resolved through the incorporation of a reactive routing protocol. Such 
protocol will be offered through the combination of HWMP (see section 4.2.5) with CJDNS (see section 4.3) . 
Both of these will be analyzed below. The idea is that each node is auto-generating an IPv6 address along a 
cryptographic key-pair. The public-key along the IP addressed are exchanged using layer-2 based 
communication. Upon all exchanges, the mesh participants maintain a local routing table. In case a node 
wants to communication with another node that is not layer-2 reachable it initiates a find-route request 
which is propagated through its layer-2 peers. During the message propagation a route is identified and even 
stored in the intermediate routes. Although this approach has the penalty of layer-н άŦƭƻƻŘƛƴƎέ ƛǘ ǊŜǉǳƛǊŜǎ 
zero configuration and zero-maintenance during operation. Also it is immune to topological changes and 
topology splits/joins. 

On top of this layer, a set of layer-7 services are installed. This include a) a Docker runtime engine15 that is 
used to manage the dynamic deployment of JPPF Tasks, b) the Netdata16 monitoring probe that is used to 
extract compute and network measurements from the JPPF Task execution, c) the Consul17 service discovery 
agent that is used to announce the nodes existence and also maintain the consistent key-value store and d) 
the PrEstoCloud Agent which is the daemon that has a twofold role since on the one hand it proxies the 
programmability of all installed components (i.e. join mesh, deploy JPPF task, set key/value, get key ) and on 
the other hand it can be used by any JPPF Task in order to interact with the DHT.  

 

4.2 Mesh Networking  

A mesh network is defined as two or more nodes that are interconnected via IEEE 802.11 links which 
communicate via mesh services and constitute an IEEE 802.11-based wireless distribution system (WDS). A 
mesh link is shared by two nodes who can directly communicate with one another via the wireless medium. 
A pair of nodes that share a link are neighbours. Any node that supports the mesh services of control, 
management, and operation of the mesh is a mesh point (MP). If the node additionally supports access to 
client stations (STAs) or non-mesh nodes, it is called a mesh access point (MAP). A mesh portal (MPP) is an 
MP that has a non-802.11 connection to the Internet and serves as an entry point for MAC service data units 

                                         

11 https://www.raspberrypi.org/  

12 https://www.raspberrypi.org  

13 https://www.ubuntu.com/core  

14 https://ubuntu-mate.org/raspberry-pi/  

15 https://docs.docker.com/install/linux/docker-ce/debian/#prerequisites  

16 https://my-netdata.io  

17 https://www.consul.io/  

 

https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.ubuntu.com/core
https://ubuntu-mate.org/raspberry-pi/
https://docs.docker.com/install/linux/docker-ce/debian/#prerequisites
https://my-netdata.io/
https://www.consul.io/
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(MSDUs) to enter or exit the mesh (Figure 4.4). An MPP and MAP may be collocated on one device. The draft 
standard18 additionally defines options for power-constrained MPs to be lightweight, in which nodes are able 
to communicate only with their neighbours and do not use the distribution system (DS) or provide congestion 
control services. It additionally defines a non-forwarding MP for leaf nodes that can fully operate within the 
mesh even if no MAPs are available (which a STA could not do). A mesh network can have one operating 
channel or multiple operating channels. A unified channel graph (UCG) is a set of nodes that are 
interconnected on the same channel within a mesh network. 

 

  Figure 4.4 IEEE 802.11s terms: A mesh portal connects to the wired Internet, a mesh point 
just forwards mesh traffic, and a mesh access point  additionally allows  stations to associate with it. 

 

4.2.1 Channel Selection 

After initialization, a node uses the Simple Channel Unification Protocol where the MP performs active or 
passive scanning of the neighbours. If no neighbouring MPs are found, the MP can establish itself as the 
initiator of a mesh network by selecting a channel precedence value based on the boot time of the MP plus 
a random number. If two disjoint mesh networks are discovered (i.e., they are on different channels), the 
channel is chosen according to the highest precedence value. If the mesh is in the 5 GHz band, the mesh is 
required to conform to the regulatory requirements of the dynamic frequency selection (DFS) and radar 
avoidance to conform with FCC UNII-R regulation. 

4.2.2 Topology Discovery and Link State  

Mesh points that are not yet members of the mesh must first perform neighbour discovery to connect to the 
network. A node scans neighbouring nodes for beacons that contain at least one matching profile, where a 
profile consists of a mesh ID, path selection protocol identifier, and link metric identifier. If the beacon 
contains a mesh capacity element that contains a nonzero peer link value, the link can be established through 
a secure protocol (see Figure 4.5). 

                                         

18 https://standards.ieee.org/findstds/standard/802.11s-2011.html  

https://standards.ieee.org/findstds/standard/802.11s-2011.html
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Figure 4.5 Reference model for WLAN mesh interworking. 

Mesh portals bridge the wireless and wired networks. MPPs function as if on a single loop-free logical layer 
2 and interconnected layer 3 for both the internal mesh and the external LAN segments. For layer 2, the MPPs 
use the IEEE 802.1D bridging standard, and at layer 3, routing must be performed in a similar fashion to IP 
gateway routers. 

4.2.3 Path Selection and Routing  

Within a mesh, all mesh stations use the same path metric and path selection protocol. For both, 802.11s 
defines a mandatory default scheme. Because of its extensible framework, they can be replaced by other 
solutions. The default metric, termed airtime meǘǊƛŎΣ ƛƴŘƛŎŀǘŜǎ ŀ ƭƛƴƪΩǎ ƻǾŜǊŀƭƭ Ŏƻǎǘ ōȅ ǘŀƪƛƴƎ ƛƴǘƻ ŀŎŎƻǳƴǘ Řŀǘŀ 
rate, overhead, and frame error rate of a test frame of size 1 kbyte. The default path selection protocol, 
Hybrid Wireless Mesh Protocol (HWMP)(see section 4.2.5), combines the concurrent operation of a proactive 
tree-oriented approach with an on-demand distributed path selection protocol (derived from the Ad Hoc On 
Demand Distance Vector [AODV] protocol [25]). The proactive mode requires a mesh station to be configured 
as a root mesh station. In many scenarios this will be a mesh station that collocates with a portal. As such, 
the root mesh station constantly propagates routing messages that either establish and maintain paths to all 
mesh stations or simply enable mesh stations to initiate a path to it. Mesh stations also rely on AODV when 
a root mesh station is unavailable. When no path setup messages are propagated proactively, however, the 
initial path setup is delayed. 

4.2.4 Medium Access Control  

For medium access, mesh stations implement the mesh coordination function (MCF). MCF consists of a 
mandatory and an optional scheme. For the mandatory part, MCF relies on the contention-based protocol 
known as Enhanced Distributed Channel Access (EDCA), which itself is 

an improved variant of the basic 802.11 distributed coordination function (DCF). Using DCF, a station 
transmits a single frame of arbitrary length. With EDCA, a station may transmit multiple frames whose total 
transmission duration may not exceed the so-called transmission opportunity (TXOP) limit. The intended 
receiver acknowledges any successful frame reception. Additionally, EDCA differentiates four traffic 
categories with different priorities in medium access and thereby allows for limited support of quality of 
service (QoS).  

To enhance QoS, MCF describes an optional medium access protocol called Mesh Coordinated Channel 
Access (MCCA). It is a distributed reservation protocol that allows mesh stations to avoid frame collisions. 



PrEstoCloud GA 732339 Deliverable D3.9 

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò 

 

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ 

    36 

With MCCA, mesh stations reserve TXOPs in the future called MCCA opportunities (MCCAOPs). An MCCAOP 
Ƙŀǎ ŀ ǇǊŜŎƛǎŜ ǎǘŀǊǘ ǘƛƳŜ ŀƴŘ ŘǳǊŀǘƛƻƴ ƳŜŀǎǳǊŜŘ ƛƴ ǎƭƻǘǎ ƻŦ он ˃ǎΦ ¢ƻ ƴŜƎƻǘƛŀǘŜ ŀƴ a//!htΣ ŀ ƳŜǎƘ ǎǘŀǘƛƻƴ 
sends an MCCA setup request message to the intended receiver. Once established, the mesh stations 
advertise the MCCAOP via the beacon frames. Since mesh stations outside the beacon reception range could 
conflict with the existing MCCAOPs, mesh stations also include their ƴŜƛƎƘōƻǳǊǎΩ MCCAOP reservations in the 
beacon frame. At the beginning of an MCCA reservation, mesh stations other than the MCCAOP owner refrain 
from channel access. The owner of the MCCAOP uses standard EDCA to access the medium and does not 
have priority over stations that do not support MCCA. Although this compromises efficiency, simulations 
reveal that high medium utilization can still be achieved with MCCA in the presence of non-MCCA devices 
[26] Z. After an MCCA transmission ends, mesh stations use EDCA for medium contention again. 

4.2.5 Hybrid Wireless Me sh Protocol  

The IEEE 802.11s standard suggests HWMP to provide both on-demand routing for predominantly mobile 
topologies and proactive tree- based routing for predominantly fixed infrastructure networks (the protocol 
is not bound to HWMP since a functional equivalent protocol can be used). The hybrid protocol is used when 
an MP does not have an on-demand route to another MP and sends the first packet to the root. Subsequent 
packets can be sent along a shorter path that is found directly. 

4.2.5.1 On-Demand Routing  

With an on-demand routing protocol, the network is not required to use routes through the root node (or 
even have a root node). Specifically, IEEE 802.11s MPs can use a route request (RREQ) and route reply (RREP) 
mechanism to discover link metric information from source to destination. To maintain the route, nodes send 
periodic RREQs where the time between two different RREQs transmitted at the same source is known as a 
refresh-round. Sequence numbers are used per refresh-round to ensure loop-free operation. To avoid 
updating poor routes too quickly, hysteresis is used to maintain operation of the better route if the updated 
RREQ from the original route is lost or the RREQ from along another route is delivered first in a particular 
round. Each best candidate route is cached for later use if loss occurs on a newly selected route. 

4.2.5.2 Tree-Based Routing  

When an MPP exists within the topology, the network can use proactive distance vector routing through the 
root to find and maintain routes. The root announcement is broadcast by the root MPP with a  sequence 
number assigned to each broadcast round. Each node updates the metric as the announcements are received 
and rebroadcast. The MP chooses the best parent and caches other potential parents. Periodic RREQs are 
sent to parents to maintain the path to the root. If the connection to the parent is lost (three consecutive 
RREQs), the MP will notify its children, find a new parent, and send a gratuitous RREP to the root, which all 
intermediate nodes use to update their next-hop information about the source. 

  

4.3 CJDNS as Zero-Configuration layer -3  

Cjdns19 is a networking protocol, a system of digital rules for message exchange between computers. The 
philosophy behind cjdns is that networks should be easy to set up, protocols should scale up smoothly and 
security should be ubiquitous. Cjdns implements an encrypted IPv6 network using public key cryptography 
for network address allocation and a distributed hash table for routing. The New Scientist reports that 
"Instead of letting other computers connect to you through a shared IP address which anyone can use, cjdns 
only lets computers talk to one another after they have verified each other cryptographically. That means 
there is no way anyone can be intercepting your traffic. 

                                         

19 https://github.com/cjdelisle/cjdns  

https://github.com/cjdelisle/cjdns
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The cjdns program talks to other programs on the computer through a TUN device which the computer sees 
as a regular network interface that accepts IP datagrams. Any program that uses IPv6 can communicate in a 
cjdns-based network without any modification. Cjdns can communicate over wireless and Ethernet 
connections as well as tunnel over the internet. 

Cjdns addresses are the first 16 bytes (128 bits) of the double SHA-512 of the public key. All addresses must 
begin with the byte 0xFC, which in IPv6 resolution, is a private address (so there is no collision with any 
external Internet addresses). 

The address is generated initially when a node is set up, through a brute-forced key generation process (keys 
are repeatedly generated until the result of double SHA-512 begins with 0xFC). This process is unique, as it 
guarantees cryptographically bound addresses (the double SHA-512 of the public key), sourced from random 
data (private key is random data, public key is the scalar multiplication of this data). 

The routing engine stores its routing table in a distributed hash table similar to Kademlia. When forwarding 
a packet, rather than looking up an entry using the traditional Kademlia approach of asking a node whose id 
is similar to that of the target, cjdns forwards the packet to that node for further processing. In order to allow 
a node to be in touch with many nodes despite being directly connected only to as few as one, there is a 
switch layer which underlies the routing layer. The switch is inspired by MPLS protocol but without the 
universal uniqueness nor longevity of MPLS labels but instead with added ability to determine the source of 
an incoming packet from its label and ability to determine whether a given node is part of the path 
represented by a label, and ability to switch a label without any memory lookups. In the simplest terms: a 
switch label is like driving directions to a destination. 

It is designed so that every node is equal; there is no hierarchy or edge routing. Rather than assigning 
addresses based on topology, all cjdns IPv6 addresses are within the FC00::/8 Unique local address space 
(keys which do not hash to addresses starting with 'FC' are discarded). Although nodes are identified with 
IPv6 addresses, cjdns does not depend upon having IPv6. Currently, each node may be connected to a few 
other nodes by manually configuring links over an IPv4 or IPv6 network (the Internet). The ultimate goal is to 
have every node connected directly by physical means; be it wire, optical cable or radio waves. 

A CryptoAuth session between two given nodes is set up with a two-packet handshake. Each of the two 
packets contains the permanent and temporary keys of the sending node which are piggybacked on top of 
normal data packets. The data in those packets is encrypted using the permanent keys. Once the temporary 
keys have been exchanged, the permanent keys are no longer used in that session and the temporary keys 
are discarded when the session ends so that the data sent during that session cannot be decrypted later.  
Finally, it should be clarified that since the handshake is piggybacked on top of the first two packets, the 
maximum allowable packet size differs from packet to packet. 

4.3.1 Routing  considerations  

Routing is designed such that each packet requires very little handling by an individual router, or node. Each 
node will respond to 'search queries' asking it for other nodes nearby to it. This allows the sending node to 
determine and add routes to its own routing table. Once the sending node has determined a route, it sends 
its packet to the first node on said route. For each hop, the receiving node reads the packet's header to 
determine where to next send the packet. Before the packet is forwarded to the next hop, the node performs 
a bit shift on the packet's headers, making it ready for use by the next node. 

The Source routing used by cjdns has advantages for performance and extensibility. Nodes can use 
experimental routing algorithms with existing meshes, and new releases of cjdns can change the default 
routing algorithm without creating protocol incompatibilities. The major security problem of source routing, 
IP address spoofing, is prevented by the end-to-end nature of cjdns encryption. 

4.3.2 Security  considerations  

The belief that security should be ubiquitous and unintrusive like air is part of the core philosophy behind 
cjdns. The routing engine runs in user space and is compiled by default with stack-smashing protection, 
position-independent code, non-executable stack, and remapping of the global offset table as read-only 
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(relro). The code also relies on an ad-hoc sandboxing feature based on setting the resource limit for open 
files to zero, on many systems this serves block access to any new file descriptors, severely limiting the code's 
ability to interact with the system around it. 

 

4.4 Layer-7 components  

After layer2 and layer-3 (auto)configuration, a set of layer-7 services will be executed in each node. These 
services are not only related to the operation of the DHT but also with the global configuration of the edge 
resource. More specifically, the services that will be pre-installed on each device will be: 

¶ a) The Netdata20 monitoring probe which will be responsible to  

¶ b) The Container Runtime Engine which will be responsible for deploying and undeploying containers  

¶ c) The Consul21 DHT as a base key/value store 

¶ d) The PrEstoCloud Agent which coordinates the execution of all the above plus it provides a REST-
based management interface for external components  

We will briefly elaborate each one of the layer-7 components. 

4.4.1 Netdata monitoring probe  

Netdata is a system for distributed real-time performance and health monitoring. It provides unparalleled 
insights, in real-time, of everything happening on the system it runs, using modern interactive web 
dashboards (see Figure 4.6). The monitoring framework is  fast and efficient, designed to permanently run 
on all systems (physical & virtual servers, containers, IoT devices), without disrupting their core function. 
Therefore, it is already ported on arm-based architectures. Based on its benchmarking, it responds to all 
queries in less than 0.5 ms per metric, even on low-end hardware while it supports dynamic thresholds, 
hysteresis, alarm templates, multiple role-based notification methods. Furthermore, it is extensible since you 
can monitor anything you can get a metric for, using its Plugin API. Moreover, the library is auto-configurable 
since it can collect up to 5000 metrics per server out of the box. Finally, several time-series back-ends are 
supported out of the box, including Prometheus22 ǿƘƛŎƘ ƛǎ tǊ9ǎǘƻ/ƭƻǳŘΩǎ ŎƘƻƛŎŜΦ 

                                         

20 https://github.com/firehol/netdata  

21 https://consul.io  

22 https://prometheus.io  

https://github.com/firehol/netdata
https://consul.io/
https://prometheus.io/
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Figure 4.6 Netdata monitoring probe configuration 

The endpoint where monitoring streams are reported is configured by the PrEstoCloud agent. 

4.4.2 Container  runtime engine  

Containers offer a logical packaging mechanism in which applications can be abstracted from the 
environment in which they actually run. This decoupling allows container-based applications to be deployed 
easily and consistently, regardless of whether the target environment  which consists from edge resources 
in our case. Containerization provides a clean separation of concerns, as developers focus on their application 
logic and dependencies, while IT operations teams can focus on deployment and management without 
bothering with application details such as specific software versions and configurations specific to the app. 
For those coming from virtualized environments, containers are often compared with virtual machines (VMs). 
You might already be familiar with VMs: a guest operating system such as Linux or Windows runs on top of a 
host operating system with virtualized access to the underlying hardware. Like virtual machines, containers 
allow you to package your application together with libraries and other dependencies, providing isolated 
ŜƴǾƛǊƻƴƳŜƴǘǎ ŦƻǊ ǊǳƴƴƛƴƎ ȅƻǳǊ ǎƻŦǘǿŀǊŜ ǎŜǊǾƛŎŜǎΦ !ǎ ȅƻǳΩƭƭ ǎŜŜ ōŜƭƻǿ ƘƻǿŜǾŜǊ όFigure 4.7), the similarities 
end here as containers offer a far more lightweight unit for developers and IT Ops teams to work with, 
carrying a myriad of benefits. 
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Figure 4.7 Containers vs VMs 

Instead of virtualizing the hardware stack as with the virtual machines approach, containers virtualize at the 
operating system level, with multiple containers running atop the OS kernel directly. This means that 
containers are far more lightweight: they share the OS kernel, start much faster, and use a fraction of the 
memory compared to booting an entire OS. To this end, in the frame of PrEstoCloud Docker Engine23 will be 
used as the default Container engine. It should be clarified that all PrEstoTasks that will be executed in the 
edge devices will be wrapped as containers. 

4.4.3 Consul DHT 

Consul is a tool offering Distributed Hash Table capabilities developed mainly for service discovery and 
configuration. The is distributed, highly available, and extremely scalable and it provides the following key 
features: 

¶ Key/Value Storage - A flexible key/value store enables storing dynamic configuration, feature 
flagging, coordination, leader election and more.  

¶ Service Discovery - Consul makes it simple for services to register themselves and to discover other 
services via a DNS or HTTP interface. External services such as SaaS providers can be registered as 
well. 

¶ Health Checking - Health Checking enables Consul to quickly alert operators about any issues in a 
cluster. The integration with service discovery prevents routing traffic to unhealthy hosts and enables 
service level circuit breakers. 

Finally, Consul is built to be datacenter aware, and can support any number of regions without complex 
configuration. Furthermore, it runs on Linux and supports IoT deployments. Its behavior is also controlled by 
the PrEstoCloud Agent. 

4.4.4 PrEstoCloud Agent 

The PrEstoCloud Agent is responsible to manage the lifecycle of all the components above. Furthermore, it 
proxies some of their functionalities acting as a point of unification. The table below provides an abstract 
view of the method 

Table 4-1 Summary of API calls of the PrEstoCloud Agent 

Method Description 

                                         

23 https://www.docker.com  

https://www.docker.com/
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/getNodeId It returns the descriptive code of the edge resources as 
configured by the CJDNS. Practically, it is a global-scope 
IPv6 address that will not change even upon the reboot 
of the edge device. 

/getDeviceContext It returns the immutable meta-data of the edge device 
such as architecture (e.g. arm), storage, memory, cpu-
type, cpu-speed etc. 

/getAdjacentNodes It returns the identifiers of the neighbourhood nodes in 
the format that is reported by the 802.11s driver. 

/getPublicKey It returns the cryptographic public key that is assigned 
to the edge resource during the CJDNS bootstrappling 

/setClusterHead It enforces the edge resource to consider a specific node 
ŀǎ ŀ ά/ƭǳǎǘŜǊ IŜŀŘέΦ ! /ƭǳǎǘŜǊ IŜŀŘ ƛǎ ŀ ƴƻŘŜ ǘƘŀǘ is 
ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǎƻƳŜ άŎŜƴǘǊŀƭƛȊŜŘ ǘŀǎƪǎέ ǎǳŎƘ ŀǎ 
ƳŜŀǎǳǊŜƳŜƴǘǎΩ ŎƻƭƭŜŎǘƛƻƴ, workload-prediction etc. 

/getClusterHead It returns the current node identifier that is considered 
clusterhead by the resource. 

/becomeClusterHead It instructs the edge resource to become a cluster head. 
This practically means that the resource will start 
beaconing this fact to the entire mesh. 

/deployContainer It is used to store a container in the local container 
registry of the edge resource.  

/getDeployedContainers  It is used to retrieve the containers that are already 
ǊŜƎƛǎǘŜǊŜŘ ƛƴ ǘƘŜ ŘŜǾƛŎŜΩǎ ǊŜƎƛǎǘǊȅ 

/deleteDeployedContainer It instructs the edge resource to delete one container 
from its local registry 

/startDeployedContainer It instructs the edge resource to initiate a container that 
already exists in its registry 

/getRunningContainers It returns the list of the running containers in the edge 
resource 

/stopRunningContainer It instructs the edge resource to stop a running 
container. 

/getMeasurementsForMetric It returns a list of timestamped values that represent for 
a set if metrics 

/putKeyValuePair It triggers a ǘǊŀƴǎŀŎǘƛƻƴŀƭ άǇǳǘέ ƛƴ ǘƘŜ 5I¢ 

/getValuesForKey It returns a list of values from the DHT 

 

 

4.5 Testbed 

For the sake of experimentation several edge resources have been employed. Figure 4.5 illustrates some of 
the devices that are being used.  
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Figure 4.8 Edge resources used during PrEstoCloud experiments 

 

More specifically, the following devices have been used: 

¶ 10 Raspberyy Pi devices (Model 3B & Model 3B+) 

¶ 1 DJI Tello Drone24  

¶ 5 Intel NUC25s 

¶ several laptops 

¶ 20 WiPi Mesh cards26 

In the first phase of development, special emphasis has been given in the established on of a fully dynamic 
environment where temporal storage is provided. In the second phase of the project, detailed measurements 
regarding the efficiency of the logical topology maintenance and the read/writes to the DHT will be 
conducted taking under consideration various topology and mobility scenarios.  

                                         

24 https://store.dji.com/product/tello  

25 https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html  

26 https://export.farnell.com/element14/wipi/dongle-wifi-usb-for-raspberry/dp/2133900?COM=referral-
noscript  

https://store.dji.com/product/tello
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://export.farnell.com/element14/wipi/dongle-wifi-usb-for-raspberry/dp/2133900?COM=referral-noscript
https://export.farnell.com/element14/wipi/dongle-wifi-usb-for-raspberry/dp/2133900?COM=referral-noscript





