
PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 1

Project acronym: PrEstoCloud

Project full name:
Proactive Cloud Resources Management at the Edge

for efficient Real-Time Big Data Processing

Grant agreement number: 732339

D3.9 Spatiotemporal Processing Capabilities - Iteration 1

Deliverable Editor: Panagiotis Gouvas (UBITECH)

Other contributors:
Kostas Theodosiou(UBITECH), Panagiotis Parthenis(UBITECH),
Giannis Ledakis (UBITECH)

Deliverable Reviewers:
Quentin Jacquemart & Guillaume Urvoy-Keller (CNRS), Yevgeniya
Sulema (LiveU)

Deliverable due date: 30/4/2018

Submission date: 26/6/2018

Distribution level: Public

Version: 1.0

This document is part of a research project funded

by the Horizon 2020 Framework Programme of the European
Union

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 2

#ÈÁÎÇÅ ,ÏÇ

Version Date Amended by Changes

0.1 26/3/2018 Panagiotis Gouvas Table of Contents

0.2 3/4/2018 Kostas Theodosiou Introduction

0.3 23/4/2018 Panagiotis Gouvas, Giannis
Ledakis

Chapter 2 ς PrEstoCloud requirements for
temporal storage

0.4 15/5/2018 Panagiotis Gouvas, Kostas
Theodosiou

Chapter 2 ς Overview of DHTs & Problem
Statement on maintaining a temporal storage
in Mesh

0.5 26/5/2018 Panagiotis Gouvas, Kostas
Theodosiou

Chapter 3 ς State of the art analysis

0.6 13/6/2018 Panagiotis Gouvas Chapter 4 ς Analysis of PrEstoCloud Stack

0.7 15/6/2018 Panagiotis Gouvas Conclusions, Executive Summary, Review
Version

0.8 19/6/2018 Panagiotis Gouvas Incorporation of 1st Reviewer Comments

0.9 22/6/2018 Panagiotis Gouvas Incorporation of 2nd Reviewer Comments

1.0 26/6/2018 Panagiotis Gouvas Final Version

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 3

4ÁÂÌÅ ÏÆ #ÏÎÔÅÎÔÓ

Change Log ..2

Table of Contents ..3

List of Tables ..5

List of Figures ..5

List of Lists ...5

List of Abbreviations ..6

Executive Summary ...7

1. Introduction ..8

1.1 Scope ...8

1.2 Relation to PrEstoCloud Architecture ...8

1.3 Structure ..9

2. The problem of low-latency storage in Mesh Topologies ... 10

2.1 Temporal Data Storage during PrEstoCloud Task execution.. 10

2.2 DHTs at a glance ... 11

2.2.1 History .. 11

2.2.2 DHT Properties ... 12

2.2.3 DHT Principles ... 12

2.3 Difficulties in maintaining a distributed key-value store in Mesh Environments 16

3. State of the art analysis on DHT structures on top of Mesh Topologies 20

3.1 Comparison of dominant DHT implementations ... 20

3.2 Chord protocol in a more detailed view... 25

3.3 Chord protocol on top of a dynamic network topology... 27

4. PrEstoCloud Device Stack .. 31

4.1 Layers of the PDK ... 31

4.2 Mesh Networking ... 33

4.2.1 Channel Selection ... 34

4.2.2 Topology Discovery and Link State ... 34

4.2.3 Path Selection and Routing .. 35

4.2.4 Medium Access Control .. 35

4.2.5 Hybrid Wireless Mesh Protocol .. 36

4.3 CJDNS as Zero-Configuration layer-3 ... 36

4.3.1 Routing considerations ... 37

4.3.2 Security considerations .. 37

4.4 Layer-7 components ... 38

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 4

4.4.1 Netdata monitoring probe ... 38

4.4.2 Container runtime engine .. 39

4.4.3 Consul DHT ... 40

4.4.4 PrEstoCloud Agent .. 40

4.5 Testbed ... 41

5. Conclusions .. 43

References .. 44

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 5

,ÉÓÔ ÏÆ 4ÁÂÌÅÓ

Table 1 ς List of Acronyms --- 6

Table 3-1 Comparison of Structured P2P approaches -- 23

Table 4-1 Summary of API calls of the PrEstoCloud Agent --- 40

,ÉÓÔ ÏÆ &ÉÇÕÒÅÓ

Figure 1.1 Lack of reliable low-latency storage during task execution on the Edge ----------------------- 8

Figure 1.2 The logical positioning of the PSTL library --- 9

Figure 2.1 Lack of reliable low-latency storage during task execution on the Edge --------------------- 10

Figure 2.2 DHT overview --- 13

CƛƎǳǊŜ нΦо /ƘƻǊŘΩǎ ƪŜȅǎǇŀŎŜ ǇŀǊǘƛǘƛƻƴƛƴƎ --- 14

Figure 2.4 Mesh Networking Environment -- 17

Figure 2.5 Two islands before they merge --- 18

Figure 2.6 Two islands already merged --- 18

Figure 3.1 Application Interface for Structured DHT-based P2P Overlay Systems ----------------------- 20

Figure 3.2 Chord Ring of 10 peers and 5 key-value pairs. -- 26

Figure 3.3 Services that rely on an operational DHT in dynamic environment --------------------------- 28

Figure 3.4 Four-Layered Approach --- 29

Figure 3.5 Overlay Topology stabilization & DHT entries stabilization -------------------------------------- 30

Figure 4.1 Granular View of the PrEstoCloud stack -- 31

Figure 4.2 Mesh mode vs Ad-hoc mode -- 32

Figure 4.3 Mesh support by existing drivers --- 32

Figure 4.4 IEEE 802.11s terms: A mesh portal connects to the wired Internet, a mesh point just
forwards mesh traffic, and a mesh access point additionally allows stations to associate with it. 34

Figure 4.5 Reference model for WLAN mesh interworking. --- 35

Figure 4.6 Netdata monitoring probe configuration -- 39

Figure 4.7 Containers vs VMs --- 40

Figure 4.8 Edge resources used during PrEstoCloud experiments --- 42

,ÉÓÔ ÏÆ ,ÉÓÔÓ

No table of figures entries found.

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 6

,ÉÓÔ ÏÆ !ÂÂÒÅÖÉÁÔÉÏÎÓ

The following table presents the acronyms used in the deliverable.

Table 1 ς List of Acronyms

Abbreviation Description

CPU Central Processing Unit

DHT Distributed Hash Table

DC resource Data Center resource

GPU Graphics Processing Unit

I5! IƛƎƘƭȅ 5ƛǎǘǊƛōǳǘŜŘ !ǇǇƭƛŎŀǘƛƻƴǎ

a// aƻōƛƭŜ /ƭƻǳŘ /ƻƳǇǳǘƛƴƎ

a9/ aƻōƛƭŜ 9ŘƎŜ /ƻƳǇǳǘƛƴƎ

h{ hǇŜǊŀǘƛƴƎ {ȅǎǘŜƳ

t5{ tǊ9ǎǘƻ/ƭƻǳŘ 5ŜǾƛŎŜ {ǘŀŎƪ

t{¢[tǊ9ǎǘƻ/ƭƻǳŘ {Ǉŀǘƛƻ ¢ŜƳǇƻǊŀƭ [ƛōǊŀǊȅ

¢h{/!
¢ƻǇƻƭƻƎȅ ŀƴŘ hǊŎƘŜǎǘǊŀǘƛƻƴ {ǇŜŎƛŦƛŎŀǘƛƻƴ ŦƻǊ /ƭƻǳŘ
!ǇǇƭƛŎŀǘƛƻƴǎ

¦!± ¦ƴƳŀƴƴŜŘ !ŜǊƛŀƭ ±ŜƘƛŎƭŜ

±a ±ƛǊǘǳŀƭ aŀŎƘƛƴŜ

·a[9ȄǘŜƴǎƛōƭŜ aŀǊƪǳǇ [ŀƴƎǳŀƎŜ

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 7

%ØÅÃÕÔÉÖÅ 3ÕÍÍÁÒÙ

This deliverable reports on the work performed under the Task 3.5 which aims at the development
of a Spatio Temporal library that can be used for persistence of data during computations performed
at the edge. More specifically, when performing distributed computations, there is a need for
reading and writing to a data storage structure which is accessible by all compute nodes. This data
structure must expose an API (i.e. read/write functional primitives) which will be used by the
business logic of the computations per se. In case the computations are performed in a data center
there are many data structures that can be used. In fact, most of the big data frameworks depend
on underlying storage engines (e.g. HDFS) in order to handle immutable partition collections such as
Resilient Data Sets in Spark.

Such data storage structures operate on highly stable data centers and rely on preconfigured
redundancy elements that are placed by DevOps. Furthermore, the communication of the big data
workers with the storage engine is extremely efficient since the network latency between the
workers and the storage engine is minimal (less than 1ms in some cases). Finally, these data
structures are able, by design, to handle parallel reads and writes by independent workers. However,
such structures cannot be used in the case of edge computations. In case of a distributed
computation that is performed in the edge part of the network the operational prerequisites of these
data structures are totally invalidated. Instead of stable Data Center resources, the operational
environment consists of resource limited devices that formulate temporal connections using mesh
connectivity principles. Such connections can be established or broken at any time based on the
mobility profile of the edge devices. One possible solution regarding the lack of existence of such a
structure is to offload all persistence requests to the backhaul part of the network.

Unfortunately, this solution is not viable because of many reasons. First, this solution would assume
that edge resources are continuously connected to DC resources which is not the case in general.
Furthermore, the connectivity delay that would be paid as a penalty of the offloading process would
raise a significant overhead to the computational task that would interact with the storage (even in
a good case 50ms cannot be compared with 1ms). Finally, offloading data to the backhaul would
result to unnecessary utilization of the network capacity.

An elegant solution to the problem of lack of storage relies on the usage of a Distributed Hash Table
(hereinafter DHT). A DHT is a data structure that is created and maintained by many network
participants. Such a structure is used widely today for temporal storage in extremely sophisticated
frameworks such as Consul, etcd, etc. The challenge in the PrEstoCloud paradigm is that this
structure must operate on top of decentralized dynamic networks. A network that consists of nodes
that formulate temporal connections with its adjacents and in parallel do not rely on a central node
ŦƻǊ ǊƻǳǘƛƴƎ ƛǎ ŎŀƭƭŜŘ Ψmesh networkΩ. The requirement of being operational on top of mesh networks
raises many challenges such as a) how edge resources join seamlessly in a mesh using zero-touch
configuration? b) how resources are globally addressable taking under consideration that mesh
networks may split or join on demand? c) how parallel reads and writes are handled in a consistent
way? and d) how PrEstoCloud computation tasks make use of the storage API?

All these requirements can be satisfied using a combination of protocols in a layered manner that
are encapsulated in a so-called PrEstoCloud Device Stack (PDS). PDS is a software package that upon
installation performs all appropriate configurations so that an edge resource is able to accept
computational tasks and in parallel able to interact with the DHT that is member of. The cornerstone
technologies that have been used in order to realize PDS are a) the 802.11s protocol (layer-2 mesh
networking protocol); b) the CJDNS IPv6-based routing protocol; c) the JPPF distributed computing
framework, d) the Docker runtime engine and e) an implementation of the Chord DHT protocol
(Hazelcast). It should be mentioned that the PDS is currently operational in Raspberry-based devices
(ARM-based architecture). In the second phase of the project, additional architectures will be
supported.

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 8

1.)ÎÔÒÏÄÕÃÔÉÏÎ

1.1 Scope

The scope of this deliverable is to elaborate on the Spatiotemporal Processing capabilities that will
be offered by the PrEstoCloud framework. These capabilities relate to the need that PrEstoCloud
Tasks have for storing and retrieving datasets from other tasks during execution of jobs on the edge
devices. The major difficulty that has to be tackled is that edge devices are loosely connected and
thus they cannot rely on an existing storage protocol that is usable in reliable data centers. The
alternative of sending and requesting data during a task execution to a datacenter is a priori
unacceptable since it would radically increase the delay and the traffic between the edge (also
addressed as fronthaul in the telecommunications jargon) and the datacenter (also addressed as
backhaul). This problem is illustrated on the figure below (Figure 1.1).

Figure 1.1 Lack of reliable low-latency storage during task execution on the Edge

In order to achieve efficient and transactional storage of data during PrEstoCloud Task execution a
PrEstoCloud Spatio Temporal Library (hereinafter PSTL) has been developed which can be used
unconditionally by any PrEstoCloud Task that is executed on an Edge Device. The storage library is
responsible for storing and retrieving key-value sets with consistency guarantees irrelevant to the
dynamicity of the environment. To do so, a layered approach will be followed which will be
elaborated in detail.

1.2 Relation to PrEstoCloud Architecture

As it can be illustrated on Figure 1.2 (see Deliverable D2.3[1]), PSTL library is positioned on the device
layer. More specifically, the library is part of a complex device stack that is provided during the
onboarding of a device to a Mesh network. The PrEstoCloud Device Stack (hereinafter PDS) is
responsible to undertake many functionalities such as a) layer-2 connectivity on a mesh network; b)
layer-3 IP address autoconfiguration (avoiding static IP configuration); c) monitoring; d) the
installation of the management agent (i.e. onloading/offloading Agent) and e) the initiation of PSTL.

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 9

Figure 1.2 The logical positioning of the PSTL library

Although the purpose of the deliverable is to shed light on the Spatio Temporal Library the entire
PrEstoCloud Device Stack will be briefly explained in order to achieve maximum comprehension
from the reader.

1.3 Structure

The deliverable is structured as follows:

¶ /ƘŀǇǘŜǊ н ǿƛƭƭ ŜƭŀōƻǊŀǘŜ ƻƴ ǘƘŜ ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ƻŦ άƳŀƛƴǘŀƛƴƛƴƎ ŀ ŎƻƴǎƛǎǘŜƴǘ ǘŜƳǇƻǊŀƭ
ǎǘƻǊŀƎŜ ǎǘǊǳŎǘǳǊŜ ƻƴ ǘƻǇ ƻŦ aŜǎƘ ¢ƻǇƻƭƻƎƛŜǎέΦ ¢ƻǿŀǊŘǎ ǘƘŜǎŜ ƭƛƴŜǎΣ ǘƘŜ ŘƛŦŦƛŎǳƭǘƛŜǎ ŦƻǊ
building and maintaining such a structure will be analyzed. The cornerstone technology of
such structures is the usage of Distributed Hash Tables (hereinafter DHTs)

¶ Chapter 3 will provide a state of the art analysis regarding the problem that has been raised
above. More specifically, existing techniques for building and maintaining DHTs on top of
structured and unstructured networks is provided.

¶ Chapter 4 is dedicated to the analysis of the PrEstoCloud Device Stack (PDS). As it will be
explained, part of the PDS is the PSTL per se. Yet the entire stack will be elaborated.

¶ Chapter 5 concludes this deliverable.

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 10

2. 4ÈÅ ÐÒÏÂÌÅÍ ÏÆ ÌÏ×ȤÌÁÔÅÎÃÙ ÓÔÏÒÁÇÅ ÉÎ -ÅÓÈ 4ÏÐÏÌÏÇÉÅÓ

2.1 Temporal Data Storage during PrEstoCloud Task execution

The aim of the PrEstoCloud project is to deliver an efficient real-time stream processing framework
tailored for edge resources. Based on this, one of the most critical aspects is the selection of an
appropriate distributed computing framework which will be extended in order to include advanced
resource management policies. In the frame of PrEstoCloud, the JPPF framework1 has been selected
based on two main reasons. The first has to do with its ability to be used on resource limited devices
and second relates to its ability to be able to dynamically expand and shrink its processing nodes
(workers) in a fault-tolerant way.

According to the JPPF terminology, which is de-facto adopted in PrEstoCloud, each processing Job is
split in several Tasks that can be executed in parallel since they have distinct execution contexts i.e.
non-correlated inputs. These tasks are dynamically allocated to cluster nodes which are part of the
edge resources. In the frame of PrEstoCloud the JPPF framework had to be extended in various ways
since the Task-allocation policy has to consult the load prediction module. During the execution of
a task there is a need for persistence in order for the task to store intermediate or final results that
are accessible/observable by all tasks that belong to the same job. This flow is depicted on the figure
below.

Figure 2.1 Lack of reliable low-latency storage during task execution on the Edge

1 https://www.jppf.org

https://www.jppf.org/

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 11

As illustrated, a PrEstoCloud application is processing a streaming input and based on a specific
business logic it performs segmentation of the input in order to process it in parallel. The
segmentation business logic is performed through the extension of a base class which is addressed
PrEstoJob.

Processing per se is performed by another class which must extend the class PrEstoTask. In other
words, PrEstoJob and PrEstoTask are extended JPPF classes and one PrEstoJob consists of multiple
PrEstoTasks. During the execution of the PrEstoTasks a developer may store and retrieve results that
should be queryable by other tasks. Such persistence storage should offer pure decentralization,
scalability, transactional guarantees and fault-tolerance. To achieve these requirements the
temporal storage will rely on a reference implementation of a Distributed Hash Table. As we will
see, such a structure has inherent distribution and scalability properties; yet it is rather difficult to
be maintained within a loosely coupled topology of edge devices. Such a network topology where
nodes are temporarily connected without any form of centralized management is addressed as Mesh
Network.

2.2 DHTs at a glance

A Distributed Hash Table is a class of decentralized distributed system that provides a lookup service
similar to a hash table; (key, value) pairs are stored in the DHT, and any participating node can
efficiently retrieve the value associated with a given key. Responsibility for maintaining the mapping
from keys to values is distributed among the nodes, in such a way that a change in the set of
participants causes a minimal amount of disruption. This allows DHTs to scale to extremely large
numbers of nodes and to handle continuous node arrivals, departures, and failures.

DHTs form an infrastructure that can be used to build more complex services, such as distributed file
systems, peer-to-peer file sharing and content distribution systems, cooperative web caching,
multicast, anycast, domain name services, and instant messaging, social applications etc. Notable
distributed networks that use DHTs include BitTorrent's distributed tracker2, the Kad network, YaCy3,
and the Coral Content Distribution Network [2].

2.2.1 History

Research on DHT was originally motivated, in part, by peer-to-peer systems such as Napster4,
Gnutella5, and Freenet6, which took advantage of resources distributed across the Internet to provide
useful applications. In particular, they took advantage of increased bandwidth and hard disk capacity
to provide a file sharing service. These systems differed in how they found the data their peers
contained. Napster had a central index server: each node, upon joining, would send a list of locally
ƘŜƭŘ ŦƛƭŜǎ ǘƻ ǘƘŜ ǎŜǊǾŜǊΣ ǿƘƛŎƘ ǿƻǳƭŘ ǇŜǊŦƻǊƳ ǎŜŀǊŎƘŜǎ ŀƴŘ ǊŜŦŜǊ ǘƘŜ ΨǉǳŜǊƛŜǊΩ ǘƻ ǘƘŜ ƴƻŘŜǎ ǘƘŀǘ ƘŜƭŘ
the results. This central component left the system vulnerable to attacks and lawsuits.

Gnutella and similar networks moved to a flooding query modelτin essence, each search would
result in a message being broadcasted to every other machine in the network. While avoiding a single

2http://bitconjurer.org/BitTorrent

3http:// yacy.net/Technology.html

4http://www.napster.com

5 Gnutella Protocol Specification http://wiki.limewire.org/index.php?title=GDF

6http://freenetproject.org/

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 12

point of failure, this method was significantly less efficient than Napster. Moreover, Freenet was also
fully distributed, but employed a heuristic key-based routing in which each file was associated with
a key, and files with similar keys tended to cluster on a similar set of nodes. Queries were likely to be
routed through the network to such a cluster without needing to visit many peers. However, Freenet
did not guarantee that data would be found.

On the other hand, Distributed Hash Tables use a more structured key-based routing in order to
attain both the decentralization of Gnutella and Freenet, and the efficiency and guaranteed results
of Napster. One drawback is that like Freenet, DHTs only directly support exact-match search, rather
than keyword search, although such functionality can be layered on top of a DHT.

From 2001 to 2004, six systemsτCAN [3], Chord [4], Pastry [5], Tapestry [6], Kademlia [7] and Viceroy
[8] τ ignited DHTs as a popular research topic, and this area of research remains active. Outside
academia, DHT technology has been adopted as a component of BitTorrent and in the Coral Content
Distribution Network.

2.2.2 DHT Properties

DHTs characteristically feature the following properties:

¶ Decentralization: the nodes collectively form the system without any central coordination.

¶ Scalability: the system should function efficiently even with thousands or millions of nodes.

¶ Fault tolerance: the system should be reliable (in some sense) even with nodes continuously
joining, leaving, and failing.

A key technique used to achieve these goals is that any node needs to coordinate with only a few
other nodes in the system ς most commonly, O(log n) of the n participants ς so that only a limited
amount of work needs to be done for each change in membership.

Some DHT designs seek to be secure against malicious participants [9] and to allow participants to
remain anonymous, though this is less common than in many other peer-to-peer (especially file
sharing) systems. Finally, DHTs also deal with more traditional distributed systems issues such as load
balancing, data integrity, and performance (in particular, ensuring that operations such as routing
and data storage or retrieval complete quickly).

2.2.3 DHT Principles

The structure of a DHT can be decomposed into several main components. The foundation is an
abstract keyspace. A keyspace partitioning scheme splits ownership of this keyspace among the
participating nodes. A logicalnetwork then, connects the nodes, allowing them to find the owner of
any given key in the keyspace. This logical network is addressed as overlay network.

Once these components are in place, a typical use of the DHT for storage and retrieval might proceed
as follows. Suppose the keyspace is the set of 160-bit strings. To store a file with given filename and
data in the DHT, the SHA-1 7 hash of filename is generated, producing a 160-bit key k, and a message
put(k,data) is sent to any node participating in the DHT. The message is forwarded from node to
node through the overlay network until it reaches the single node responsible for key k as specified
by the keyspace partitioning. The appropriate node stores the key and the data. Any other client can
retrieve the contents of the file by again hashing filename to produce k and asking any DHT node to

7 https://en.wikipedia.org/wiki/SHA-1

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 13

find the data associated with k with a message get(k). The message will again be routed through the
overlay to the node responsible for k, which will reply with the stored data.

These principles are depicted at Figure 2.2 where the inner circle represents the physical topology
of the mobile nodes while the outer circle represents the DHT overlay. The general idea is that every
node that is registered to the DHT is able to publish and retrieve data. Please note that the same
Hash function that is used for node registration in the overlay is used for data registration. This is
very crucial since it is related to the keyspace partitioning.

Figure 2.2 DHT overview

The keyspace partitioning and overlay network components are described below with the goal of
capturing the principal ideas common to most DHTs; many designs differ in the details.

2.2.3.1 Keyspace partitioning

Most DHTs use some variant of consistent hashings [10] , to map keys to nodes. This technique
employs a function ɻ όƪ1,k2) which defines an abstract notion of the distance from key k1 to key k2,
which is unrelated to geographical distance or network latency. Each node is assigned a single key
called its identifier (ID). A node with ID ixowns all the keys km for which ix is the closest ID, measured
according to ɻ όƪm,in).

In order to make keyspace partitioning clearer, let us consider an example from a real DHT
implementation. The Chord DHT treats keys as points on a circle, and ɻ όƪ1,k2) is the distance traveling
clockwise around the circle from k1 to k2. Thus, the circular keyspace is split into contiguous segments
whose endpoints are the node identifiers. If i1 and i2 are two adjacent IDs, then the node with ID i2
owns all the keys that fall between i1 and i2. This is depicted in Figure 2.3 where a Chord DHT is
bootstrapped. The DHT is configured to have replication factor equals to two. This practically means
that every key-value pair that is assigned to the node-responsible is automatically assigned to the
next two successors in the overlay. So, if a key-value pair with key:K is stored (e.g. by node-F) to the

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 14

DHT and A<K<B then the authoritative physical node that must store this pair is the one that has
Hash(NodeID)=B. Because of the replication factor, nodes B,C and D store keys in the range of A-B.

Figure 2.3 /ƘƻǊŘΩǎ ƪŜȅǎǇŀŎŜ ǇŀǊǘƛǘƛƻƴƛƴƎ

Consistent hashing is based on mapping items to a real angle (or equivalently a point on the edge of
a circle). Each of the available machines (or other storage buckets) is also pseudo-randomly mapped
on to a series of angles around the circle. The bucket where each item should be stored is then
chosen by selecting the next highest angle which an available bucket maps to. The result is that each
bucket contains the resources mapping to an angle between itself and the next smallest angle.

If a bucket becomes unavailable (e.g. because the computer it resides on is not reachable), then, the
angles it maps to will be removed. Requests for resources that would have mapped to each of those
points now map to the next highest point. Since each bucket is associated with many pseudo-
randomly distributed points, the resources that were held by that bucket will now map to many
different buckets. The items that mapped to the lost bucket must be redistributed among the
remaining ones, but values mapping to other buckets will still do so and do not need to be moved.

A similar process occurs when a bucket is added. By adding an angle, we make any resources
between that and the next smallest angle map to the new bucket. These resources will no longer be
associated with the previous bucket, and any value previously stored there will not be found by the
selection method described above. The portion of the keys associated with each bucket can be
altered by altering the number of angles that bucket maps to.

Consistent hashing has the essential property of minimal disturbance of the network during removal
or addition of nodes since topology-changes affect only the set of keys owned by the nodes with
adjacent IDs, and leaves all other nodes unaffected. On the other hand, in traditional hash tables
addition or removal of one bucket causes nearly the remapping of the entire keyspace. Since any
change in ownership typically corresponds to bandwidth-intensive movement of objects stored in
the DHT from one node to another, minimizing such reorganization is required to efficiently support

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 15

high rates of churn (node arrival and failure). The most common consistent Hashing function is SHA-
1.

2.2.3.2 Overlay Network

Each node maintains a set of links to other nodes (its neighbors or routing table). Together these
links form the overlay network. A node picks its neighbors according to a certain structure, called the
network's topology.

All DHT topologies share some variant of the most essential property: for any key k, each node either
knows a node ID which owns k or has a link to a node whose node ID is closer to k, in terms of the
keyspace distance defined above. It is then easy to route a message to the owner of any key k using
the following greedy algorithm (that is not necessarily globally optimal): at each step, forward the
message to the neighbor whose ID is closest to k. When there is no such neighbor, then we must
have arrived at the closest node, which is the owner of k as defined above. This style of routing is
sometimes called key-based routing.

Beyond basic routing correctness, two important constraints on the topology are to guarantee that
the maximum number of hops in any route (route length) is low, so that requests complete quickly;
and that the maximum number of neighbors of any node (maximum node degree) is low, so that
maintenance overhead is not excessive. Of course, having shorter routes requires higher maximum
degree. Some common choices for maximum degree and route length are as follows, where n is the
number of nodes in the DHT, using Big O notation (see Table 3-1):

¶ Degree O(1), route length O(n)

¶ Degree O(logn), route length O(logn / loglogn)

¶ Degree O(logn), route length O(logn)

¶ Degree O(Ѝὲ), route length O(1)

The third choice is the most common even though it is not quite optimal in terms of degree/route
length tradeoff, because such topologies typically allow more flexibility in choice of neighbors. Many
DHTs use that flexibility to pick neighbors which are close in terms of latency in the physical
underlying network.

Maximum route length is closely related to diameter: the maximum number of hops in any shortest
path between nodes. Clearly the network's route length is at least as large as its diameter, so DHTs
are limited by the degree/diameter trade off which is fundamental in graph theory. Route length can
be greater than diameter since the greedy routing algorithm may not find shortest paths.

2.2.3.3 Variations of diverse Implementations

The most notable differences encountered in practical instances of DHT implementations are
discussed below. First of all, several real world DHTs use 128 bit or 160 bit keyspace. Furthermore,
some real-world DHTs use hash functions other than SHA1. Additionally, in the real world the key k
could be a hash of a file's content rather than a hash of a file's name, so that renaming of the file
does not prevent users from finding it.

Moreover, some DHTs may also publish objects of different types. For example, key k could be node
ID and associated data could describe how to contact this node. This flexibility allows publication of
presence information and is often used in Instant Messaging applications, etc. In simplest case ID is
just a random number which is directly used as key k (so in a 160-bit DHT ID will be a 160 bit number,
usually randomly chosen). In some DHTs publishing of nodes IDs is also used to optimize DHT
operations.

Redundancy can be added to improve reliability. The (k,data) key pair can be stored in more than
one node corresponding to the key. Usually, rather than selecting just one node, real world DHT

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 16

algorithms select i suitable nodes, with i being an implementation-specific parameter of the DHT. In
some DHT designs, nodes agree to handle a certain keyspace range, the size of which may be chosen
dynamically, rather than hard-coded.

Some advanced DHTs like Kademlia [11] perform iterative lookups through the DHT first, in order to
select a set of suitable nodes and send put(k,data) messages only to those nodes, thus drastically
reducing useless traffic, since published messages are only sent to nodes which seem suitable for
storing the key k; and iterative lookups cover just a small set of nodes rather than the entire DHT,
reducing useless forwarding. In such DHTs forwarding of put(k,data) messages may only occur as
part of a self-healing algorithm: if a target node receives a put(k,data) message but believes that k is
out of its handled range and a closer node (in terms of DHT keyspace) is known, the message is
forwarded to that node. Otherwise, data are indexed locally. This leads to a somewhat self-balancing
DHT behavior. Of course, such an algorithm requires nodes to publish their presence data in the DHT
so the iterative lookups can be performed.

2.3 Difficulties in maintaining a distributed key -value store in Mesh
Environments

In chapter 2.1 the principles of DHTs and the merits that are derived from them were presented.
However, DHTs are designed to operate on the Internet environment and not on a Mesh
environment. More specifically, the assumptions that are made by the majority of DHT
implementations which are met by the Internet environment are the following:

Efficient underlay routing & efficient connection establishment: e.g. assume that a newnode enters
the overlay in a Chord DHT implementation between node1 and node2 (we remind the reader that
Chords uses a circular overlay topology). Since new segments have been formulated i.e. node1-
newnode&newnode-node2, specific key-value entries have to be transferred from node2 to
newnode. This transfer has to be done efficiently without a big communication start-up cost since a
possible query for a specific key k in the structure may end-up at node1. If newnode is the
corresponding node according to the consistent hashing function, node1 will consult its finger table
and will propagate the query to newnode. Consequently, newnode should be ready to respond to
the query performer as quick as possible in order to prevent blocking issues.

Long lasting connections& stationary peers: assume that in the example described above, newnode
ŜƴǘŜǊǎ ŀƴŘ ƭŜŀǾŜǎ ǘƘŜ ǘƻǇƻƭƻƎȅ ƛƴǎǘŀƴǘƭȅΦ ¢Ƙƛǎ ǿƻǳƭŘ ƴƻǘ ōŜ ŎŀǘŀǎǘǊƻǇƘƛŎ ŦƻǊ ǘƘŜ 5I¢ ǎǘǊǳŎǘǳǊŜΩǎ
coherency (since mechanisms that handle timeouts during key-value transfers exist) but it would
generate a signaling cost both in the network and the overlay layer. This cost may be insignificant in
fixed networks since a predefined routing scheme exists (see below) but in a Mesh Environment it
would be too expensive.

Hierarchical routing scheme: Assume that in the example described above, node2 is notified that
specific key-value pairs must be transferred to newnode. However, node2 is not aware on how new
node will be reached (i.e. it is not a concern of node2)Σ ǎƛƴŎŜ LƴǘŜǊƴŜǘΩǎ ƘƛŜǊŀǊŎƘƛŎŀƭ ǎǘǊǳŎǘǳǊŜ ƛƳǇƭƛŜǎ
that the transferable key-value entry(ies) will be routed to node2Ωǎ ŘŜŦŀǳƭǘ ƎŀǘŜǿŀȅ ŀƴŘ ǘƘǊƻǳƎƘ
TCP/IP entries will reach their destination.

Dedicated peers: As explained above, the task of overlay topology construction and maintenance is
undertaken by low level mechanisms which in most of the cases are centralized or semi-centralized.
Indicatively, such mechanisms are used in the Gnutella network [12] , in which topology creation
may be achieved by using a pre-defined address-list of working nodes included within a compliant
client or by using web caches of known nodes, a.k.a. Gnutella web caches. Similarly, Chord pre-
assumes that nodes are ordered in a ring and are aware of their successor and predecessor in the
overlay ring topology. Chord also relies on underlying mechanisms for the overlay network
bootstrapping [13] . In fact, p2p protocols are able to react to topology changes (and automatically
re-assign key-value pairs) but are not responsible for creating and maintaining the overlay topology.

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 17

This indicative issue, among others, is delegated to some super-peers that are also accessible due to
the hierarchical routing scheme.

Stable network: Stable network refers to the backbone network and not to the endpoints that
constitute the DHT peers. A stable backbone network ensures the efficiency of the hierarchical
routing scheme and prevents island formulation. In order to clarify this issue, assume that in the
example of a dynamic network topology - newnode is connected to node2 through a unique valid
route e.g. newnode-nodex-nodey-node2 and the connection between nodex and nodey during key-
value pair transfer is lost. This would result in the formulation of two islands consisting of i) island
1:newnode, nodex and all their local neighbors and ii) island 2: nodey, node2 and all their local
neighbors.

It is obvious that none of the aforementioned assumptions can be considered as granted in a Mesh
environment. Nodes are not stationary and links are considered unreliable (see Figure 2.4).
Moreover, there is no form of centralization and no dedicated peer in order to coordinate overlay
construction. Consequently, the construction and maintenance of the overlay must be accomplished
in an ad-hoc mode.

Figure 2.4 Mesh Networking Environment

Furthermore, low level routing among nodes is an important issue since no predefined routing
scheme can be taken for granted. Therefore, alternative routing policies have to be adopted. Such
routing protocols will be described at chapter 4.2.3.

Finally, the most critical problem is the lack of topological hierarchy which results in loosely
temporarily created graphs. Such graphs (a.k.a. islands) of interconnected nodes may merge and split
according to the current topology. This affects significantly the DHT operation. E.g. assume that in
two existing separate islands, as depicted at Figure 2.5,the Chord protocol has bootstrapped. The
mechanisms that have been used by Chord to bootstrap do not work in this example. According to
Chord all participant nodes are directed to circular overlay topology for both islands. Assume that
one node from one island committed put(key1,valuex) and another node from the other island

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 18

committed in his circle/DHT put(key1,valuey). In the next step, the nodes that comprise the two
islands come closer and formulate one big island (see Figure 2.6).

Figure 2.5 Two islands before they merge

Figure 2.6 Two islands already merged

The goal that has to be achieved after merging is the efficient identification of the responsible node
that maintains the value of key1 after the query of a third-party node. Normally, according to the
DHT consistency principle, values should be merged and a possible get(key1) should result in the

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 19

multi-value response valuex-valuey. However, a successful response pre-assumes that DHT signaling
has been completed. On the other hand signaling is of minor importance for DHTs that are
bootstrapped on fixed networks but it is considered too expensive for Mesh Environments.

Moreover, node-splitting is a scenario where DHT consistency is not guaranteed. E.g. assume that
the big island of Figure 2.6 splits in two sub-islands of Figure 2.5. Suppose that a specific key1-valuex
pair is published, the DHT protocol is Chord and the HashOf(key1)=130. According to Chord algorithm
the responsible node for storing this pair is the successor node of 130 i.e. node 140 in our case. It
must be clarified here, that node 140 actually means node with HashOf(NodeID)=140 where NodeID
is something common among the nodes e.g. their MAC address. According to the splitting scenario,
ǘƘŜ ǇƘȅǎƛŎŀƭ ǘƻǇƻƭƻƎȅ ƛǎ ǎǇƭƛǘ ŀƴŘ ƴƻŘŜ мпл ōŜƭƻƴƎǎ ǘƻ ǘƘŜ ΨōƭǳŜΩ ƛǎƭŀƴŘΦ bƻǿ ǘƘŜ ǉǳŜǎǘƛƻƴ ƛǎ ǿƘŀǘ ǿƛƭƭ
the result be when nodŜ ΩтфΩ ŦǊƻƳ ǘƘŜ ƻǊŀƴƎŜ ƛǎƭŀƴŘǎ ŎƻƳƳƛǘǎ get(key1)? The answer is null since in
ǘƘŜ ΨƻǊŀƴƎŜΩ ƛǎƭŀƴŘ ǘƘŜ ŀǳǘƘƻǊƛǘŀǘƛǾŜ ƴƻŘŜ ŦƻǊ ǇǊƻǾƛŘƛƴƎ ǘƘŜ ǊŜǎǇƻƴǎŜ ƛǎ ƴƻŘŜ мфл όƛΦŜΦ ǘƘŜ ǎǳŎŎŜǎǎƻǊ
of 130). Node 190 has no info about key1.

Similarly, assume that during put(key1,valuex) (and before splitting up) there was a redundancy policy
and the key-value pair was stored to its successor and to the next node (one node for redundancy).
After the split-ǳǇΣ ǿƘŜƴ ƴƻŘŜ ΩтфΩ ŦǊƻƳ ǘƘŜ ƻǊŀƴƎŜ ƛǎƭŀƴŘǎ ŎƻƳƳƛǘǎ get(key1), the result would be
valuex. So, redundancy is the key parameter as far as network splitting is concerned. Consequently,
merging and splitting, in general, results in significant signaling cost on Mesh environments.

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 20

3. 3ÔÁÔÅ ÏÆ ÔÈÅ ÁÒÔ ÁÎÁÌÙÓÉÓ ÏÎ $(4 ÓÔÒÕÃÔÕÒÅÓ ÏÎ ÔÏÐ ÏÆ -ÅÓÈ
4ÏÐÏÌÏÇÉÅÓ

3.1 Comparison of dominant DHT implementations

As already described, DHTs belong to the category of structured peer to peer systems according to
which the location information of data-object is placed deterministically at a specific peer identified
ōȅ ǘƘŜ Řŀǘŀ ƻōƧŜŎǘΩǎ ǳƴƛǉǳŜ ƪŜȅΦ 5I¢-based systems have the advantage of consistent assignment of
data-objects to the nodes that constitute the network.

As it is clarified up to now, data objects are assigned unique identifiers called keys, chosen from the
same identifier space. Keys are mapped by the overlay network protocol to a unique live peer in the
overlay network. The P2P overlay networks support the scalable storage and retrieval of {key,value}
pairs on the overlay network, as illustrated in Figure 3.1. Given a key, a store operation
put(key,value)and a lookup retrieval operation value=get(key) can be invoked to store and retrieve
the data object corresponding to the key, which involves routing requests to the peer corresponding
ǘƻ ǘƘŜ ƪŜȅΦ 9ŀŎƘ ǇŜŜǊ Ƴŀƛƴǘŀƛƴǎ ŀ ǎƳŀƭƭ ǊƻǳǘƛƴƎ ǘŀōƭŜ ŎƻƴǎƛǎǘƛƴƎ ƻŦ ƛǘǎ ƴŜƛƎƘōƻǊƛƴƎ ǇŜŜǊǎΩ bƻŘŜL5ǎ
and network addresses. In the case of MESH networks, centralized routing protocols cannot be
utilized. Lookup queries or message routing requests are forwarded across overlay paths to peers in
a progressive manner utilizing the NodeIDs that are closer to the key in the identifier space.

Figure 3.1 Application Interface for Structured DHT-based P2P Overlay Systems

Different DHT-based systems have different organization schemes for the data objects and
their key space and routing strategies. In theory, DHT-based systems can guarantee that any data
object can be located in O(logN) overlay hops on average, where N is the number of peers in the
system. The underlying network path between two peers can be significantly different from the path
on the DHT-based overlay network. Therefore, the lookup latency in DHT-based P2P overlay
networks can be quite high and could adversely affect the performance of the applications running
over it. [14] provides an elegant algorithm that achieves nearly optimal latency on graphs that exhibit
power-law expansion [15] , at the same time, preserving the scalable routing properties of the DHT-
based system.

DHT-based systems [10] are an important class of P2P routing infrastructures. They support the rapid
development of a wide variety of Internet-scale applications ranging from distributed file and naming

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 21

systems to application-layer multicasting. They also enable scalable, wide-area retrieval of shared
information. In 1999, Napster pioneered the idea of a peer-to- peer file sharing system supporting a
centralized file search facility. It was the first system to recognize that requests for popular content
need not to be sent to a central server but instead it could be handled by many peers that have the
requested content. Such P2P file-sharing systems are self-scaling in that as more peers join the
system, they add to the aggregate download capability. Napster achieved this self-scaling behavior
by using a centralized search facility based on file lists provided by each peer, thus, it does not require
much bandwidth for the centralized search. Such a system has the issue of a single point of failure
due to the centralized search mechanism. However, a lawsuit filed by the Recording Industry
Association of America (RIAA) forced Napster to shut down the file-sharing service of digital music
τ literally, its killer application.

However, the paradigm caught the imagination of platform providers and users alike. Gnutella is a
ŘŜŎŜƴǘǊŀƭƛȊŜŘ ǎȅǎǘŜƳ ǘƘŀǘ ŘƛǎǘǊƛōǳǘŜǎ ōƻǘƘ ǎŜŀǊŎƘ ŀƴŘ ŘƻǿƴƭƻŀŘǎΩ ŎŀǇŀōƛƭƛǘƛŜǎΣ ŜǎǘŀōƭƛǎƘƛƴƎ ŀƴ
overlay network of peers. It is the first system that makes use of an Unstructured P2P overlay
network. An Unstructured P2Psystem is composed of peers joining the network with some loose
rules, without any prior knowledge of the topology. The network uses flooding as the mechanism to
send queries across the overlay with a limited scope. When a peer receives the flood query, it sends
a list of all content matching the query to the originating peer. While flooding-based techniques are
effective for locating highly replicated items and are resilient to peers joining and leaving the system,
they are poorly suited for locating rare items. Clearly this approach is not scalable as the load on
each peer grows linearly with the total number of queries and the system size. Thus, Unstructured
P2P networks face one basic problem: peers readily become overloaded, therefore, the system does
not scale when handling a high rate of aggregate queries and sudden increase in system size.

Although Structured P2P networks can efficiently locate rare items since the key-based routing is
scalable, they incur significantly higher overheads than Unstructured P2P networks for popular
content. Consequently, over the Internet today, the decentralized Unstructured P2P overlay
networks are more commonly used. However, there are recent efforts on Key-based Routing (KBR)
API abstractions [16] that allow more application-specific functionality to be built over this common
basic KBR API abstractions, and OpenHash (Open publicly accessible DHT service) [17] that allows the
unification platform of providing developers with basic DHT service models that runs on a set of
infrastructure hosts, to deploy DHT-based overlay applications without the burden of maintaining a
DHT and with ease of use to spur the deployment of DHT-based applications.

In contrast, Unstructured P2P overlay systems are Ad-Hoc in nature, and do not present the
possibilities of being unified under a common platform for application development. In Table 3-1,
we will describe the key features of Structured P2P and Unstructured P2P overlay networks and their
operational functionalities. After providing a basic understanding of the various overlays schemes in

PrEstoCloud GA 732339 Deliverable D3.9
άtǊƻŀŎǘƛǾŜ /ƭƻǳŘ wŜǎƻǳǊŎŜǎ aŀƴŀƎŜƳŜƴǘ ŀǘ ǘƘŜ 9ŘƎŜ ŦƻǊ ŜŦŦƛŎƛŜƴǘ wŜŀƭ-¢ƛƳŜ .ƛƎ 5ŀǘŀ tǊƻŎŜǎǎƛƴƎέ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 22

these two classes, an evaluation of these schemes is provided [18] followed by some comparative
results based on the following attributes:

¶ Decentralization: examine whether the overlay system is distributed.

¶ Architecture: describe the overlay system architecture with respect to its operation.

¶ Lookup Protocol: the lookup query protocol adopted by the overlay system.

¶ System Parameters: the required system parameters for the overlay system operation.

¶ Routing Performance: the lookup routing protocol performance in overlay routing.

¶ Routing State: the routing state and scalability of the overlay system.

¶ Peers Join and Leave: describe the behavior of the overlay system when churn and self-
organization occurred.

¶ Security: look into the security vulnerabilities of overlay system.

¶ Reliability and Fault Resiliency: examine how robust the overlay system when subjected to
faults.

Although all protocols that are discussed in Table 3-1 are candidate ones for being adopted in
PrEstoCloud Cloud, the architectural simplicity of Chord along its good performance under mobility
scenarios [19] urged us to select it as the cornerstone for implementation.

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 23

Table 3-1 Comparison of Structured P2P approaches

Algorithm

Taxonomy

Structured P2P Overlay Network Comparisons

CAN Chord Tapestry Pastry Kademlia Viceroy

Decentralization DHT functionality on Internet-like scale

Architecture Multi-dimensional

ID coordinate space.

Uni-directional and

Circular NodeID
space.

Plaxton-style
global mesh
network.

Plaxton-style global

mesh network.

XOR metric for
distance

between points

in the key space.

Butterfly network

with connected ring

of predecessor and

successor links, data

managed by servers.

Lookup Protocol key,value pairs to

map a point P in

the coordinate space

using uniform hash

function.

Matching Key and

NodeID.

Matching suffix in

NodeID.

Matching Key and

prefix in NodeID.

Matching Key and

Node-ID based
routing.

Routing through levels

of tree until a

peer is reached with

no downlinks; vicinity

search performed

using ring and level ring
links.

System
Parameters

N-number of peers

in network d-number

of dimensions.

N-number of peers

in network.

N-number of peers

in network B-base
of

the chosen peer
identifier.

N-number of peers

in network b-number

of bits (B = 2b) used

for the base of the

chosen identifier.

N-number of peers

in network b-number

of bits ((B = 2b) of

NodeID.

N-number of peers

in network.

Routing

Performance ὕὨȢὔ ὕὰέὫὔ ὕÌÏÇὔ ὕÌÏÇὔ

ὕÌÏÇὔ ὧ
where

c = small constant

ὕὰέὫὔ

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 24

Routing State ςὨ ὰέὫὔ ÌÏÇὔ ὄÌÏÇὔ ὄÌÏÇὔ ὄÌÏÇὔ ὄ ὰέὫὔ

Peers Join/Leave ςὨ ὰέὫὔ ÌÏÇὔ ÌÏÇὔ
ÌÏÇὔ ὧ where

c = small constant
ὰέὫὔ

Security Low level. Suffers from man-in-middle and Trojan attacks.

Reliability/Fault

Resiliency

Failure of peers will

not cause network
wide failure. Multiple

peers responsible

for each data item.

On failures,
application

retries.

Failure of peers

will not cause

network-wide
failure.

Replicate data on

multiple consecutive

peers. On failures,

application retries.

Failure of peers

will not cause

network-wide
failure. Replicate
data across
multiple peers.
Keep track of
multiple paths

Failure of peers

will not cause

network-wide failure.

Replicate data across

multiple peers. Keep

track of multiple

paths to each peer.

Failure of peers will

not cause network
wide

failure. Replicate

data across multiple

peers.

Failure of peers will

not cause network wide
failure. Load incurred by
lookups routing evenly

distributed among

participating lookup
servers.

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 25

3.2 Chord protocol in a more detailed view

Chord [4] uses consistent hashing [10] to assign keys to its peers. Consistent hashing is designed to let peers
enter and leave the network with minimal interruption. This decentralized scheme tends to balance the load
on the system, since each peer receives roughly the same number of keys, and there is little movement of
keys when peers join and leave the system. In a steady state, for N peers in the system, each peer maintains
routing state information for about only O(logN) other peers (N number of peers in the system). This may be
efficient but performance degrades gracefully when that information is out-of-date.

The consistent hash functions assign peers and data keys an m-bit identifier using SHA-1 [20] as the base
ƘŀǎƘ ŦǳƴŎǘƛƻƴΦ ! ǇŜŜǊΩǎ ƛŘŜƴǘƛŦƛŜǊ ƛǎ ŎƘƻǎŜƴ ōȅ ƘŀǎƘƛƴƎ ǘƘŜ ǇŜŜǊΩǎ Lt ŀŘŘǊŜǎǎΣ ǿƘƛƭŜ ŀ ƪŜȅ ƛŘŜƴǘƛŦƛŜǊ ƛǎ ǇǊƻŘǳŎŜŘ
by hashing the data key. The length of the identifier ΨƳΩ must be large enough to make the probability of keys
hashing to the same identifier negligible. Identifiers are ordered on an identifier circle modulo 2m.Key k is
assigned to the first peer whose identifier is equal to or follows k in the identifier space. This peer is called
the successor peer of key k, denoted by successor(k). If identifiers are represented as a circle of numbers
ŦǊƻƳ л ǘƻ нƳ ҍ мΣ ǘƘŜƴ ǎǳŎŎŜǎǎƻǊόƪύ ƛǎ ǘƘŜ ŦƛǊǎǘ ǇŜŜǊ ŎƭƻŎƪǿƛǎŜ ŦǊƻƳ ƪΦ

The identifier circle is termed as the Chord ring. To maintain consistent hashing mapping when a peer n joins
the network, certain keys previously assigned to nΩǎ ǎǳŎŎŜǎǎƻǊ ƴƻǿ ƴŜŜd to be reassigned to n. When peer n
ƭŜŀǾŜǎ ǘƘŜ /ƘƻǊŘ ǎȅǎǘŜƳΣ ŀƭƭ ƻŦ ƛǘǎ ŀǎǎƛƎƴŜŘ ƪŜȅǎ ŀǊŜ ǊŜŀǎǎƛƎƴŜŘ ǘƻ ƴΩǎ ǎǳŎŎŜǎǎƻǊΦ ¢ƘŜǊŜŦƻǊŜΣ ǇŜŜǊǎ Ƨƻƛƴ ŀƴŘ
leave the system with (logN)2 performance (i.e. exchanged messages). No other changes of keys assignment
to peers need to occur. In Figure 3.2(adapted from [4]), the Chord ring is depicted with m = 6. This particular
ring has ten peers and stores five keys. The successor of the identifier 10 is peer 14, so key 10 will be located
at NodeID 14. Similarly, if a peer were to join with identifier 26, it would store the key with identifier 24 from
the peer with identifier 32.

Each peer in the Chord ring needs to know how to contact its current successor peer on the identifier circle.
Lookup queries involve the matching of key and NodeID. For a given identifier, queries could be applied
around the circle via these successor pointers until they encounter a pair of peers that include the desired
identifier; the second peer in the pair is the peer the query maps to. An example is presented in Figure 3.2,
whereby peer 8 performs a lookup for key 54. Peer 8 invokes the find successor operation for this key, which
eventually returns the successor of that key, i.e. peer 56. The query visits every peer on the circle between
peer 8 and peer 56. The response is returned along the reverse of the path.

As m is the number of bits in the key/NodeID space, each peer n maintains a routing table with up to m
entries, called the finger table. The ith entry in the table at peer n contains the identity of the first peer s that
it least 2ƛҍм positions after n on the identifier circle, i.e. s = successor(n + 2ƛҍм ύΣ ǿƘŜǊŜ м Җ ƛ Җ ƳΦ tŜŜǊ ǎ ƛǎ ǘƘŜ
ith finger of peer n (n.finger[i]). A finger table entry includes both the Chord identifier and the IP address (and
port number) of the relevant peer.

Figure 3.2 shows the finger table of peer 8, and the first finger entry for this peer points to peer 14, as the
latter is the first peer that succeeds (8+20) mod 26 = 9. Similarly, the last finger of peer 8 points to peer 42,
i.e. the first peer that succeeds (8 + 25) mod 26 = 40. In this way, peers store information about only a small
number of other peers, and know more about peers closely following it on the identifier circle than other
peers. Also, a ǇŜŜǊΩǎ ŦƛƴƎŜǊ ǘŀōƭŜ ŘƻŜǎ ƴƻǘ Ŏƻƴǘŀƛƴ ŜƴƻǳƎƘ ƛƴŦƻǊƳŀǘƛƻƴ ǘƻ ŘƛǊŜŎǘƭȅ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ǎǳŎŎŜǎǎƻǊ ƻŦ

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 26

an arbitrary key k. For example, peer 8 cannot determine the successor of key 34 by itself, as successor of
ǘƘƛǎ ƪŜȅ όǇŜŜǊ оуύ ƛǎ ƴƻǘ ǇǊŜǎŜƴǘ ƛƴ ǇŜŜǊ уΩǎ ŦƛƴƎŜǊ table.

Figure 3.2 Chord Ring of 10 peers and 5 key-value pairs.

When a peer joins the system, the successor pointers of some peers need to be changed. It is important that
the successor pointers are up to date at any time because the correctness of lookups is not guaranteed
otherwise. The Chord protocol uses a stabilization protocol [4] running periodically in the background to
update the successor pointers and the entries in the finger table. The correctness of the Chord protocol relies
on the fact that each peer is aware of its successors. When peers fail, it is possible that a peer does not know
its new successor and it has no chance to learn about it. To avoid this situation, peers maintain a successor
list of size r, which cƻƴǘŀƛƴǎ ǘƘŜ ǇŜŜǊΩǎ ŦƛǊǎǘ r successors.

When the successor peer does not respond, the peer simply contacts the next peer on its successor list.
Assuming that peer failures occur with a probability p, the probability that every peer on the successor list
will fail is pr. Increasing r makes the system more robust. By tuning this parameter, any degree of robustness

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 27

with good reliability and fault resiliency may be achieved. The following applications are examples of how
Chord could be used:

¶ Cooperative mirroring or Cooperative File System (CFS) [21], in which multiple providers of content
ŎƻƻǇŜǊŀǘŜ ǘƻ ǎǘƻǊŜ ŀƴŘ ǎŜǊǾŜ ŜŀŎƘ ƻǘƘŜǊǎΩ ŘŀǘŀΦ {ǇǊŜŀŘƛƴƎ ǘƘŜ ǘƻǘŀƭ ƭƻŀŘ ŜǾŜƴƭȅ ƻǾŜǊ ŀƭƭ ǇŀǊǘƛŎƛǇŀƴǘ
hosts lowers the total cost of the system, since each participant needs to provide capacity only for
the average load, not for the peak load. There are two layers in CFS. The DHash (Distributed Hash)
layer performs block fetches for the peer, distributes the blocks among the servers, and maintains
cached and replicated copies. The Chord layer distributed lookup system is used to locate the servers
responsible for a block.

¶ Chord-based DNS [22] provides a lookup service, with host names as keys and IP addresses (and
other host information) as values. Chord could provide a DNS-like service by hashing each host name
to a key [10]. Chord-based DNS would require no special servers, while ordinary DNS systems rely on
a set of special root servers. DNS also requires manual management of the routing information (DNS
records) that allows clients to navigate the name server hierarchy; Chord automatically maintains
the correctness of the analogous routing information. DNS only works well when host names are
hierarchically structured to reflect administrative boundaries; Chord imposes no naming structure.
DNS is specialized to the task of finding named hosts or services, while Chord can also be used to find
data object values that are not tied to particular machines.

3.3 Chord protocol on top of a dynamic network topology

The PrEstoCloud proposed approach aims at the provision of a generic framework that will facilitate the
design and development of autonomic and decentralized services in Mesh networks (see Figure-4.1). The
introduction of the different layers of the proposed approach is necessary due to the need to address the
following challenges: a) efficiently utilize available network resources in a dynamic environment, b) provide
services independently from the underlying topology, c) ensure reliability of services in case of network
topology changes and d) reduce the management complexity and increase flexibility to application
developers. In order to address these challenges, autonomic functionalities have to be incorporated. The
following self-* properties have been defined [23] and should be supported by an autonomic system: self-
configuration, self-optimization, self-awareness and self- healing.

Existing protocols that satisfy partially the challenges described above were considered during the design of
the proposed approach. There is no existing work on how to combine existing protocols for achieving
autonomic service provisioning and how different protocols could interact using predefined interfaces.
Taking into account these considerations, the proposed approach is focusing on a) defining concrete layering
for enabling autonomic service provisioning in Mesh networks, b) specifying the discrete functionality of each
layer and the interfaces between them and c) resolving conflicts between existing protocols, specifically in
the field of the overlay topology construction.

The creation and maintenance of an overlay topology that logically interconnects all the participating nodes
in the physical network is critical in our approach. Any node that connects to the ad-hoc network has to join
to the overlay network. The overlay network is formulated during the topology stabilization phase in an
autonomic manner and hides any details of the underlying physical infrastructure, e.g. link establishment or
torn down, node failures, node mobility, etc. In case of multiple changes in the physical topology, the overlay
network is able to adapt quickly to the new environment (re-stabilization). Furthermore, recovery from

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 28

failures can be easily achieved based on information that is available in the network. All these tasks are
realized without the intervention of the network administrator.

Figure 3.3 Services that rely on an operational DHT in dynamic environment

After the overlay network is established, participating nodes are able to store and retrieve data using typical
p2p protocols. Every node that wishes to store a keyvalue- pair, or query a value based on a key, can achieve
it by using a Distributed Hash Table (DHT) [24] that operates on-top of the overlay topology. In a similar way,
several applications can be built taking under consideration the existence of a high level API put(key,value)
and get(key) that would interact with a DHT protocol that operates on-top of a non-reliable Mesh
environment.

Provided services are designed based on the assumption of collaboration and dissemination of information
among the participating nodes. These services can be fully decentralized as data and functionality is allocated
in different nodes at the overlay network. Some functions may be delegated to more than one nodes for
higher reliability. In case of changes or failures, roles may be re-assigned autonomously and performance
guarantees may be assured for the services provision.

We propose a four-layered scheme based on the functionality requirements imposed by the provided
services and the underlying physical networking environment. As shown in Figure-4.2, the following four
layers are defined; i) Neighbor-to-Neighbor layer, ii) Routing layer, iii) Topology Maintenance layer, and iv)
DHT layer. Each layer has a discrete role, implements different mechanisms and specifies its messages types.
The proposed layered approach is independent from the selection of p2p protocols, topology formulation

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 29

mechanisms and routing protocols. Therefore, any combination of different protocols may be selected and
proper adaptations may be proposed.

Figure 3.4 Four-Layered Approach

The Neighbor-to-Neighbor layer is responsible for delivering an upper-layer frame from a neighbor to another
neighbor. No information from the upper layer is necessary for the delivery. Two types of messages are used;
i) MAC_SEND in order to achieve one way frame delivery from neighbor X to neighbor Y and ii) MAC_ACK in
order to achieve acknowledgment for successful message-delivery from neighbor Y back to neighbor X. Also,
this layer is responsible for maintaining (i.e. initializing and keeping up-to-date) the routing cache of the
Routing layer since, when neighbor-to-neighbor links are created or destroyed, the related routing
information has to be updated.

The Routing layer is responsible for delivering an upper-layer frame from a node X to another node Z. It is
assumed that node X is not aware how node Z can be reached. The layer is also agnostic of the reason that
node X wants to communicate with node Z. This layer relies on routing protocol for frame forwarding across
the network. As we stated in section 3.3, in case of Mesh Environments it is suggested the use of a dynamic
routing protocol (will be covered in chapter 4).

The Topology Maintenance layer is responsible for formulating a virtual topology of the participating nodes.
In our case, the desired topology is a ring (imposed by the use of Chord). Consequently, this layer undertakes
the task of identifying the relative position of each node in the overlay topology without being based in
centralized or semi-centralized techniques.

The DHT layer is responsible for maintaining a distributed hash table that is bootstrapped over the stabilized
overlay topology. For this purpose any existing DHT protocol may be used. These protocols are (semi or fully)
decentralized and -in addition to storage and retrieval functionality- may succeed load balancing, reduce
bandwidth consumption and improve data reliability across the network. The following interfaces have been
defined for the communication among the different layers:

¶ The Neighbor-to-Neighbor layer provides to the Routing layer routing information for existing
neighbors that is stored in the routing cache of each node, through the validateRoutingCaches()

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 30

function. The Neighbor-to-Neighbor layer provides also medium-level acknowledgments to the
Routing layer for neighbor-to-neighbor communication, through the transfer_Packet() function.

¶ The Routing layer provides routing functionality to upper layers through the routePacket() function.
Additionally, it exposes topology information derived directly from the routing caches to the
Topology Maintenance layer, through the getRoutingInfo() function. It is up to the Topology
Maintenance layer to utilize this information for optimizing its mechanisms or not.

¶ The Topology Maintenance layer provides information to the DHT layer regarding the relative
position of a node in the overlay network (e.g. the predecessor and successor in case of a ring
topology) through the getRelativePosition() function. In case of changes in the network topology,
stabilization procedures take place in both layers. The Topology_Stabilize() function is used for re-
ordering the overlay topology (e.g. ring in our case) and triggers the DHT_Stabilize() function that is
used for the re-assignment of key-value pairs that are assigned in the overlay network nodes.

Figure 3.5 Overlay Topology stabilization & DHT entries stabilization

In Figure-4.3, a snapshot of the physical network topology (solid lines) and the logical overlay topology
(dashed lines with arrows) is depicted. Initially, node 3 does not exist in the network and the key-value pairs
have already been assigned to the network nodes by applications that run on the existing nodes (i.e.
applications that use DHT). Then, node 3 is physically connected with node 1 and node 4 and the
corresponding overlay topology is updated. It is the responsibility of Topology Maintenance layer to find the
ǎǳŎŎŜǎǎƻǊ ŦƻǊ ŜŀŎƘ ƴƻŘŜΦ IƻǿŜǾŜǊΣ ƛǘ ƛǎ ƴƻǘ ǘƘŜ ¢ƻǇƻƭƻƎȅ aŀƛƴǘŜƴŀƴŎŜ ƭŀȅŜǊΩǎ ǊŜǎǇƻƴǎƛōƛƭƛǘȅ ǘƻ ǊŜ-assign key-
ǾŀƭǳŜǎ ŀŎŎƻǊŘƛƴƎ ǘƻ ǘƘŜ 5I¢Ωǎ ŀǎǎƛƎƴƳŜƴǘ ŀƭƎƻǊƛthm.

The Topology Maintenance layer must inform the DHT layer that the relative position for the node in the
overlay topology (e.g. ring in case of Chord) has changed. Then it is up to DHT layer to reassign key-value
pairs. This re-assignment will be addressed as DHT re-stabilization while the updated knowledge for the
relative position in the overlay topology is called Topology stabilization.

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 31

4. 0Ò%ÓÔÏ#ÌÏÕÄ $ÅÖÉÃÅ 3ÔÁÃË

4.1 Layers of the PDK

Based on Figure 3.4 the following stack has been proposed to handle efficiently edge resources.

Figure 4.1 Granular View of the PrEstoCloud stack

An overview of each layer will be provided following a bottom up approach. In the lowest part of the stack
we have a hardware dependency. More specifically, an 802.11s-enabled card should exist. The reason for
that is that 802.11s is one of the latest standards that are accepted by the 802.11s standardization group
that offers native mesh networking capabilities. At this point it should be clarified that, in the frame of
PrEstoCloud, mesh-networking should not be confused with ad-hoc networking. In the ad-hoc networking
paradigm only single hop-connectivity is supported; hence all participating nodes should be reachable. In the
mesh paradigm, multi-hop links are supported i.e. one node can be linked with two nodes that do not have
reachability among them. This difference is also depicted on Figure 4.2. In the frame of PrEstoCloud ad-hoc
capabilities are not enough since they support only single-hop communications.

The mesh networking standard is not supported by the majority of the commercial wi-fi adapters. The reader
is prompted to visit the [ƛƴǳȄ YŜǊƴŜƭ ²ƛǊŜƭŜǎǎ 5ǊƛǾŜǊǎΩ ǇŀƎŜ8 where the capabilities of each driver is listed. As
it can be seen (Figure 4.3) a limited set of drivers are developed that include the specific networking
capability. In the frame of our testbed we used rt2800usb9 driver because of its compatibility in IoT devices.

8 https://wireless.wiki.kernel.org/en/users/drivers

9 https://wireless.wiki.kernel.org/en/users/drivers/rt2500usb

https://wireless.wiki.kernel.org/en/users/drivers

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 32

Figure 4.2 Mesh mode vs Ad-hoc mode

Figure 4.3 Mesh support by existing drivers

In addition to the usage of a mesh-enabled hardware device, a proper OS kernel has to be used that is able
to interact with the mesh-capable device. The kernel that is widely used is called open80211s10 and most of
the modern kernels are built with this module already integrated. Since the IoT devices that will be used in

10 https://github.com/o11s/open80211s/wiki/HOWTO

https://github.com/o11s/open80211s/wiki/HOWTO

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 33

our pilots are Raspberry11-based we decided to use Linux kernel 4.4+ which is used in all compatible operating
systems i.e. Raspbian12, Ubuntu Core13, Ubuntu Mate14.

The ability to have mesh-level communication is a prerequisite for edge device to edge device
communication. However, layer-3 communication per se is not guaranteed by 802.11s protocol since the
protocol is a pure layer-2 link management protocol. In order to achieve IP-based communication a routing
layer must be established. A routing layer cannot relay on a traditional centralized gateway that maintains
routing tables since the topology in a mesh environment is rapidly changing. On top of that, the IP assignment
cannot be static i.e. in case a new node arrives it should not consult the existing ones which IPs are reserved
in order to perform an initial assignment. This would not scale. These problems are addressed as dynamic
routing and IP assignment problem.

Both of these problems have been resolved through the incorporation of a reactive routing protocol. Such
protocol will be offered through the combination of HWMP (see section 4.2.5) with CJDNS (see section 4.3) .
Both of these will be analyzed below. The idea is that each node is auto-generating an IPv6 address along a
cryptographic key-pair. The public-key along the IP addressed are exchanged using layer-2 based
communication. Upon all exchanges, the mesh participants maintain a local routing table. In case a node
wants to communication with another node that is not layer-2 reachable it initiates a find-route request
which is propagated through its layer-2 peers. During the message propagation a route is identified and even
stored in the intermediate routes. Although this approach has the penalty of layer-н άŦƭƻƻŘƛƴƎέ ƛǘ ǊŜǉǳƛǊŜǎ
zero configuration and zero-maintenance during operation. Also it is immune to topological changes and
topology splits/joins.

On top of this layer, a set of layer-7 services are installed. This include a) a Docker runtime engine15 that is
used to manage the dynamic deployment of JPPF Tasks, b) the Netdata16 monitoring probe that is used to
extract compute and network measurements from the JPPF Task execution, c) the Consul17 service discovery
agent that is used to announce the nodes existence and also maintain the consistent key-value store and d)
the PrEstoCloud Agent which is the daemon that has a twofold role since on the one hand it proxies the
programmability of all installed components (i.e. join mesh, deploy JPPF task, set key/value, get key) and on
the other hand it can be used by any JPPF Task in order to interact with the DHT.

4.2 Mesh Networking

A mesh network is defined as two or more nodes that are interconnected via IEEE 802.11 links which
communicate via mesh services and constitute an IEEE 802.11-based wireless distribution system (WDS). A
mesh link is shared by two nodes who can directly communicate with one another via the wireless medium.
A pair of nodes that share a link are neighbours. Any node that supports the mesh services of control,
management, and operation of the mesh is a mesh point (MP). If the node additionally supports access to
client stations (STAs) or non-mesh nodes, it is called a mesh access point (MAP). A mesh portal (MPP) is an
MP that has a non-802.11 connection to the Internet and serves as an entry point for MAC service data units

11 https://www.raspberrypi.org/

12 https://www.raspberrypi.org

13 https://www.ubuntu.com/core

14 https://ubuntu-mate.org/raspberry-pi/

15 https://docs.docker.com/install/linux/docker-ce/debian/#prerequisites

16 https://my-netdata.io

17 https://www.consul.io/

https://www.raspberrypi.org/
https://www.raspberrypi.org/
https://www.ubuntu.com/core
https://ubuntu-mate.org/raspberry-pi/
https://docs.docker.com/install/linux/docker-ce/debian/#prerequisites
https://my-netdata.io/
https://www.consul.io/

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 34

(MSDUs) to enter or exit the mesh (Figure 4.4). An MPP and MAP may be collocated on one device. The draft
standard18 additionally defines options for power-constrained MPs to be lightweight, in which nodes are able
to communicate only with their neighbours and do not use the distribution system (DS) or provide congestion
control services. It additionally defines a non-forwarding MP for leaf nodes that can fully operate within the
mesh even if no MAPs are available (which a STA could not do). A mesh network can have one operating
channel or multiple operating channels. A unified channel graph (UCG) is a set of nodes that are
interconnected on the same channel within a mesh network.

 Figure 4.4 IEEE 802.11s terms: A mesh portal connects to the wired Internet, a mesh point
just forwards mesh traffic, and a mesh access point additionally allows stations to associate with it.

4.2.1 Channel Selection

After initialization, a node uses the Simple Channel Unification Protocol where the MP performs active or
passive scanning of the neighbours. If no neighbouring MPs are found, the MP can establish itself as the
initiator of a mesh network by selecting a channel precedence value based on the boot time of the MP plus
a random number. If two disjoint mesh networks are discovered (i.e., they are on different channels), the
channel is chosen according to the highest precedence value. If the mesh is in the 5 GHz band, the mesh is
required to conform to the regulatory requirements of the dynamic frequency selection (DFS) and radar
avoidance to conform with FCC UNII-R regulation.

4.2.2 Topology Discovery and Link State

Mesh points that are not yet members of the mesh must first perform neighbour discovery to connect to the
network. A node scans neighbouring nodes for beacons that contain at least one matching profile, where a
profile consists of a mesh ID, path selection protocol identifier, and link metric identifier. If the beacon
contains a mesh capacity element that contains a nonzero peer link value, the link can be established through
a secure protocol (see Figure 4.5).

18 https://standards.ieee.org/findstds/standard/802.11s-2011.html

https://standards.ieee.org/findstds/standard/802.11s-2011.html

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 35

Figure 4.5 Reference model for WLAN mesh interworking.

Mesh portals bridge the wireless and wired networks. MPPs function as if on a single loop-free logical layer
2 and interconnected layer 3 for both the internal mesh and the external LAN segments. For layer 2, the MPPs
use the IEEE 802.1D bridging standard, and at layer 3, routing must be performed in a similar fashion to IP
gateway routers.

4.2.3 Path Selection and Routing

Within a mesh, all mesh stations use the same path metric and path selection protocol. For both, 802.11s
defines a mandatory default scheme. Because of its extensible framework, they can be replaced by other
solutions. The default metric, termed airtime meǘǊƛŎΣ ƛƴŘƛŎŀǘŜǎ ŀ ƭƛƴƪΩǎ ƻǾŜǊŀƭƭ Ŏƻǎǘ ōȅ ǘŀƪƛƴƎ ƛƴǘƻ ŀŎŎƻǳƴǘ Řŀǘŀ
rate, overhead, and frame error rate of a test frame of size 1 kbyte. The default path selection protocol,
Hybrid Wireless Mesh Protocol (HWMP)(see section 4.2.5), combines the concurrent operation of a proactive
tree-oriented approach with an on-demand distributed path selection protocol (derived from the Ad Hoc On
Demand Distance Vector [AODV] protocol [25]). The proactive mode requires a mesh station to be configured
as a root mesh station. In many scenarios this will be a mesh station that collocates with a portal. As such,
the root mesh station constantly propagates routing messages that either establish and maintain paths to all
mesh stations or simply enable mesh stations to initiate a path to it. Mesh stations also rely on AODV when
a root mesh station is unavailable. When no path setup messages are propagated proactively, however, the
initial path setup is delayed.

4.2.4 Medium Access Control

For medium access, mesh stations implement the mesh coordination function (MCF). MCF consists of a
mandatory and an optional scheme. For the mandatory part, MCF relies on the contention-based protocol
known as Enhanced Distributed Channel Access (EDCA), which itself is

an improved variant of the basic 802.11 distributed coordination function (DCF). Using DCF, a station
transmits a single frame of arbitrary length. With EDCA, a station may transmit multiple frames whose total
transmission duration may not exceed the so-called transmission opportunity (TXOP) limit. The intended
receiver acknowledges any successful frame reception. Additionally, EDCA differentiates four traffic
categories with different priorities in medium access and thereby allows for limited support of quality of
service (QoS).

To enhance QoS, MCF describes an optional medium access protocol called Mesh Coordinated Channel
Access (MCCA). It is a distributed reservation protocol that allows mesh stations to avoid frame collisions.

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 36

With MCCA, mesh stations reserve TXOPs in the future called MCCA opportunities (MCCAOPs). An MCCAOP
Ƙŀǎ ŀ ǇǊŜŎƛǎŜ ǎǘŀǊǘ ǘƛƳŜ ŀƴŘ ŘǳǊŀǘƛƻƴ ƳŜŀǎǳǊŜŘ ƛƴ ǎƭƻǘǎ ƻŦ он ˃ǎΦ ¢ƻ ƴŜƎƻǘƛŀǘŜ ŀƴ a//!htΣ ŀ ƳŜǎƘ ǎǘŀǘƛƻƴ
sends an MCCA setup request message to the intended receiver. Once established, the mesh stations
advertise the MCCAOP via the beacon frames. Since mesh stations outside the beacon reception range could
conflict with the existing MCCAOPs, mesh stations also include their ƴŜƛƎƘōƻǳǊǎΩ MCCAOP reservations in the
beacon frame. At the beginning of an MCCA reservation, mesh stations other than the MCCAOP owner refrain
from channel access. The owner of the MCCAOP uses standard EDCA to access the medium and does not
have priority over stations that do not support MCCA. Although this compromises efficiency, simulations
reveal that high medium utilization can still be achieved with MCCA in the presence of non-MCCA devices
[26] Z. After an MCCA transmission ends, mesh stations use EDCA for medium contention again.

4.2.5 Hybrid Wireless Me sh Protocol

The IEEE 802.11s standard suggests HWMP to provide both on-demand routing for predominantly mobile
topologies and proactive tree- based routing for predominantly fixed infrastructure networks (the protocol
is not bound to HWMP since a functional equivalent protocol can be used). The hybrid protocol is used when
an MP does not have an on-demand route to another MP and sends the first packet to the root. Subsequent
packets can be sent along a shorter path that is found directly.

4.2.5.1 On-Demand Routing

With an on-demand routing protocol, the network is not required to use routes through the root node (or
even have a root node). Specifically, IEEE 802.11s MPs can use a route request (RREQ) and route reply (RREP)
mechanism to discover link metric information from source to destination. To maintain the route, nodes send
periodic RREQs where the time between two different RREQs transmitted at the same source is known as a
refresh-round. Sequence numbers are used per refresh-round to ensure loop-free operation. To avoid
updating poor routes too quickly, hysteresis is used to maintain operation of the better route if the updated
RREQ from the original route is lost or the RREQ from along another route is delivered first in a particular
round. Each best candidate route is cached for later use if loss occurs on a newly selected route.

4.2.5.2 Tree-Based Routing

When an MPP exists within the topology, the network can use proactive distance vector routing through the
root to find and maintain routes. The root announcement is broadcast by the root MPP with a sequence
number assigned to each broadcast round. Each node updates the metric as the announcements are received
and rebroadcast. The MP chooses the best parent and caches other potential parents. Periodic RREQs are
sent to parents to maintain the path to the root. If the connection to the parent is lost (three consecutive
RREQs), the MP will notify its children, find a new parent, and send a gratuitous RREP to the root, which all
intermediate nodes use to update their next-hop information about the source.

4.3 CJDNS as Zero-Configuration layer -3

Cjdns19 is a networking protocol, a system of digital rules for message exchange between computers. The
philosophy behind cjdns is that networks should be easy to set up, protocols should scale up smoothly and
security should be ubiquitous. Cjdns implements an encrypted IPv6 network using public key cryptography
for network address allocation and a distributed hash table for routing. The New Scientist reports that
"Instead of letting other computers connect to you through a shared IP address which anyone can use, cjdns
only lets computers talk to one another after they have verified each other cryptographically. That means
there is no way anyone can be intercepting your traffic.

19 https://github.com/cjdelisle/cjdns

https://github.com/cjdelisle/cjdns

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 37

The cjdns program talks to other programs on the computer through a TUN device which the computer sees
as a regular network interface that accepts IP datagrams. Any program that uses IPv6 can communicate in a
cjdns-based network without any modification. Cjdns can communicate over wireless and Ethernet
connections as well as tunnel over the internet.

Cjdns addresses are the first 16 bytes (128 bits) of the double SHA-512 of the public key. All addresses must
begin with the byte 0xFC, which in IPv6 resolution, is a private address (so there is no collision with any
external Internet addresses).

The address is generated initially when a node is set up, through a brute-forced key generation process (keys
are repeatedly generated until the result of double SHA-512 begins with 0xFC). This process is unique, as it
guarantees cryptographically bound addresses (the double SHA-512 of the public key), sourced from random
data (private key is random data, public key is the scalar multiplication of this data).

The routing engine stores its routing table in a distributed hash table similar to Kademlia. When forwarding
a packet, rather than looking up an entry using the traditional Kademlia approach of asking a node whose id
is similar to that of the target, cjdns forwards the packet to that node for further processing. In order to allow
a node to be in touch with many nodes despite being directly connected only to as few as one, there is a
switch layer which underlies the routing layer. The switch is inspired by MPLS protocol but without the
universal uniqueness nor longevity of MPLS labels but instead with added ability to determine the source of
an incoming packet from its label and ability to determine whether a given node is part of the path
represented by a label, and ability to switch a label without any memory lookups. In the simplest terms: a
switch label is like driving directions to a destination.

It is designed so that every node is equal; there is no hierarchy or edge routing. Rather than assigning
addresses based on topology, all cjdns IPv6 addresses are within the FC00::/8 Unique local address space
(keys which do not hash to addresses starting with 'FC' are discarded). Although nodes are identified with
IPv6 addresses, cjdns does not depend upon having IPv6. Currently, each node may be connected to a few
other nodes by manually configuring links over an IPv4 or IPv6 network (the Internet). The ultimate goal is to
have every node connected directly by physical means; be it wire, optical cable or radio waves.

A CryptoAuth session between two given nodes is set up with a two-packet handshake. Each of the two
packets contains the permanent and temporary keys of the sending node which are piggybacked on top of
normal data packets. The data in those packets is encrypted using the permanent keys. Once the temporary
keys have been exchanged, the permanent keys are no longer used in that session and the temporary keys
are discarded when the session ends so that the data sent during that session cannot be decrypted later.
Finally, it should be clarified that since the handshake is piggybacked on top of the first two packets, the
maximum allowable packet size differs from packet to packet.

4.3.1 Routing considerations

Routing is designed such that each packet requires very little handling by an individual router, or node. Each
node will respond to 'search queries' asking it for other nodes nearby to it. This allows the sending node to
determine and add routes to its own routing table. Once the sending node has determined a route, it sends
its packet to the first node on said route. For each hop, the receiving node reads the packet's header to
determine where to next send the packet. Before the packet is forwarded to the next hop, the node performs
a bit shift on the packet's headers, making it ready for use by the next node.

The Source routing used by cjdns has advantages for performance and extensibility. Nodes can use
experimental routing algorithms with existing meshes, and new releases of cjdns can change the default
routing algorithm without creating protocol incompatibilities. The major security problem of source routing,
IP address spoofing, is prevented by the end-to-end nature of cjdns encryption.

4.3.2 Security considerations

The belief that security should be ubiquitous and unintrusive like air is part of the core philosophy behind
cjdns. The routing engine runs in user space and is compiled by default with stack-smashing protection,
position-independent code, non-executable stack, and remapping of the global offset table as read-only

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 38

(relro). The code also relies on an ad-hoc sandboxing feature based on setting the resource limit for open
files to zero, on many systems this serves block access to any new file descriptors, severely limiting the code's
ability to interact with the system around it.

4.4 Layer-7 components

After layer2 and layer-3 (auto)configuration, a set of layer-7 services will be executed in each node. These
services are not only related to the operation of the DHT but also with the global configuration of the edge
resource. More specifically, the services that will be pre-installed on each device will be:

¶ a) The Netdata20 monitoring probe which will be responsible to

¶ b) The Container Runtime Engine which will be responsible for deploying and undeploying containers

¶ c) The Consul21 DHT as a base key/value store

¶ d) The PrEstoCloud Agent which coordinates the execution of all the above plus it provides a REST-
based management interface for external components

We will briefly elaborate each one of the layer-7 components.

4.4.1 Netdata monitoring probe

Netdata is a system for distributed real-time performance and health monitoring. It provides unparalleled
insights, in real-time, of everything happening on the system it runs, using modern interactive web
dashboards (see Figure 4.6). The monitoring framework is fast and efficient, designed to permanently run
on all systems (physical & virtual servers, containers, IoT devices), without disrupting their core function.
Therefore, it is already ported on arm-based architectures. Based on its benchmarking, it responds to all
queries in less than 0.5 ms per metric, even on low-end hardware while it supports dynamic thresholds,
hysteresis, alarm templates, multiple role-based notification methods. Furthermore, it is extensible since you
can monitor anything you can get a metric for, using its Plugin API. Moreover, the library is auto-configurable
since it can collect up to 5000 metrics per server out of the box. Finally, several time-series back-ends are
supported out of the box, including Prometheus22 ǿƘƛŎƘ ƛǎ tǊ9ǎǘƻ/ƭƻǳŘΩǎ ŎƘƻƛŎŜΦ

20 https://github.com/firehol/netdata

21 https://consul.io

22 https://prometheus.io

https://github.com/firehol/netdata
https://consul.io/
https://prometheus.io/

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 39

Figure 4.6 Netdata monitoring probe configuration

The endpoint where monitoring streams are reported is configured by the PrEstoCloud agent.

4.4.2 Container runtime engine

Containers offer a logical packaging mechanism in which applications can be abstracted from the
environment in which they actually run. This decoupling allows container-based applications to be deployed
easily and consistently, regardless of whether the target environment which consists from edge resources
in our case. Containerization provides a clean separation of concerns, as developers focus on their application
logic and dependencies, while IT operations teams can focus on deployment and management without
bothering with application details such as specific software versions and configurations specific to the app.
For those coming from virtualized environments, containers are often compared with virtual machines (VMs).
You might already be familiar with VMs: a guest operating system such as Linux or Windows runs on top of a
host operating system with virtualized access to the underlying hardware. Like virtual machines, containers
allow you to package your application together with libraries and other dependencies, providing isolated
ŜƴǾƛǊƻƴƳŜƴǘǎ ŦƻǊ ǊǳƴƴƛƴƎ ȅƻǳǊ ǎƻŦǘǿŀǊŜ ǎŜǊǾƛŎŜǎΦ !ǎ ȅƻǳΩƭƭ ǎŜŜ ōŜƭƻǿ ƘƻǿŜǾŜǊ όFigure 4.7), the similarities
end here as containers offer a far more lightweight unit for developers and IT Ops teams to work with,
carrying a myriad of benefits.

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 40

Figure 4.7 Containers vs VMs

Instead of virtualizing the hardware stack as with the virtual machines approach, containers virtualize at the
operating system level, with multiple containers running atop the OS kernel directly. This means that
containers are far more lightweight: they share the OS kernel, start much faster, and use a fraction of the
memory compared to booting an entire OS. To this end, in the frame of PrEstoCloud Docker Engine23 will be
used as the default Container engine. It should be clarified that all PrEstoTasks that will be executed in the
edge devices will be wrapped as containers.

4.4.3 Consul DHT

Consul is a tool offering Distributed Hash Table capabilities developed mainly for service discovery and
configuration. The is distributed, highly available, and extremely scalable and it provides the following key
features:

¶ Key/Value Storage - A flexible key/value store enables storing dynamic configuration, feature
flagging, coordination, leader election and more.

¶ Service Discovery - Consul makes it simple for services to register themselves and to discover other
services via a DNS or HTTP interface. External services such as SaaS providers can be registered as
well.

¶ Health Checking - Health Checking enables Consul to quickly alert operators about any issues in a
cluster. The integration with service discovery prevents routing traffic to unhealthy hosts and enables
service level circuit breakers.

Finally, Consul is built to be datacenter aware, and can support any number of regions without complex
configuration. Furthermore, it runs on Linux and supports IoT deployments. Its behavior is also controlled by
the PrEstoCloud Agent.

4.4.4 PrEstoCloud Agent

The PrEstoCloud Agent is responsible to manage the lifecycle of all the components above. Furthermore, it
proxies some of their functionalities acting as a point of unification. The table below provides an abstract
view of the method

Table 4-1 Summary of API calls of the PrEstoCloud Agent

Method Description

23 https://www.docker.com

https://www.docker.com/

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 41

/getNodeId It returns the descriptive code of the edge resources as
configured by the CJDNS. Practically, it is a global-scope
IPv6 address that will not change even upon the reboot
of the edge device.

/getDeviceContext It returns the immutable meta-data of the edge device
such as architecture (e.g. arm), storage, memory, cpu-
type, cpu-speed etc.

/getAdjacentNodes It returns the identifiers of the neighbourhood nodes in
the format that is reported by the 802.11s driver.

/getPublicKey It returns the cryptographic public key that is assigned
to the edge resource during the CJDNS bootstrappling

/setClusterHead It enforces the edge resource to consider a specific node
ŀǎ ŀ ά/ƭǳǎǘŜǊ IŜŀŘέΦ ! /ƭǳǎǘŜǊ IŜŀŘ ƛǎ ŀ ƴƻŘŜ ǘƘŀǘ is
ǊŜǎǇƻƴǎƛōƭŜ ŦƻǊ ǎƻƳŜ άŎŜƴǘǊŀƭƛȊŜŘ ǘŀǎƪǎέ ǎǳŎƘ ŀǎ
ƳŜŀǎǳǊŜƳŜƴǘǎΩ ŎƻƭƭŜŎǘƛƻƴ, workload-prediction etc.

/getClusterHead It returns the current node identifier that is considered
clusterhead by the resource.

/becomeClusterHead It instructs the edge resource to become a cluster head.
This practically means that the resource will start
beaconing this fact to the entire mesh.

/deployContainer It is used to store a container in the local container
registry of the edge resource.

/getDeployedContainers It is used to retrieve the containers that are already
ǊŜƎƛǎǘŜǊŜŘ ƛƴ ǘƘŜ ŘŜǾƛŎŜΩǎ ǊŜƎƛǎǘǊȅ

/deleteDeployedContainer It instructs the edge resource to delete one container
from its local registry

/startDeployedContainer It instructs the edge resource to initiate a container that
already exists in its registry

/getRunningContainers It returns the list of the running containers in the edge
resource

/stopRunningContainer It instructs the edge resource to stop a running
container.

/getMeasurementsForMetric It returns a list of timestamped values that represent for
a set if metrics

/putKeyValuePair It triggers a ǘǊŀƴǎŀŎǘƛƻƴŀƭ άǇǳǘέ ƛƴ ǘƘŜ 5I¢

/getValuesForKey It returns a list of values from the DHT

4.5 Testbed

For the sake of experimentation several edge resources have been employed. Figure 4.5 illustrates some of
the devices that are being used.

PrEstoCloud GA 732339 Deliverable D3.9

ñProactive Cloud Resources Management at the Edge for efficient Real-Time Big Data Processingò

2018 ϭ /ƻǇȅǊƛƎƘǘ ƭƛŜǎ ǿƛǘƘ ǘƘŜ ǊŜǎǇŜŎǘƛǾŜ ŀǳǘƘƻǊǎ ŀƴŘ ǘƘŜƛǊ ƛƴǎǘƛǘǳǘƛƻƴǎΦ

 42

Figure 4.8 Edge resources used during PrEstoCloud experiments

More specifically, the following devices have been used:

¶ 10 Raspberyy Pi devices (Model 3B & Model 3B+)

¶ 1 DJI Tello Drone24

¶ 5 Intel NUC25s

¶ several laptops

¶ 20 WiPi Mesh cards26

In the first phase of development, special emphasis has been given in the established on of a fully dynamic
environment where temporal storage is provided. In the second phase of the project, detailed measurements
regarding the efficiency of the logical topology maintenance and the read/writes to the DHT will be
conducted taking under consideration various topology and mobility scenarios.

24 https://store.dji.com/product/tello

25 https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html

26 https://export.farnell.com/element14/wipi/dongle-wifi-usb-for-raspberry/dp/2133900?COM=referral-
noscript

https://store.dji.com/product/tello
https://www.intel.com/content/www/us/en/products/boards-kits/nuc.html
https://export.farnell.com/element14/wipi/dongle-wifi-usb-for-raspberry/dp/2133900?COM=referral-noscript
https://export.farnell.com/element14/wipi/dongle-wifi-usb-for-raspberry/dp/2133900?COM=referral-noscript

