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This deliverable reports on the work performed under the Task 3.5 which aims at the development
of a Spatio Temporal library that can be used for persistence of data during compuadidosned
at the edge. More specifically, when performing distributed computations, there is a need for
reading and writing to a data storage structure which is accessible by all compute nodes. This data
structure must expose an API (i.e. read/write fuootl primitives) which will be used by the
business logic of the computations per se. In case the computations are performed in a data center
there are many data structures that can be used. In fact, most of the big data frameworks depend

on underlying stoage engines (e.g. HDFS) in order to handle immutable partition collections such as
Resilient Data Sets in Spark.

Such data storage structures operate on highly stable data centers and rely on preconfigured
redundancy elements that are placed by Dev@psthermore, the communication of the big data
workers with the storage engine is extremely efficient since the network latency between the
workers and the storage engine is minimal (less than 1ms in some cases). Finally, these data
structures are able, byasign, to handle parallel reads and writes by independent workers. However,
such structures cannot be used in the case of edge computatiolms case of a distributed
computation that is performed in thedgepart of the network the operational prerequisief these

data structures are totally invalidated. Instead of stable Data Center resources, the operational
environment consists of resource limited devices that formulate temporal connections using mesh
connectivity principles. Such connections can btalklished or broken at any time based on the
mobility profile of the edge devices. One possible solution regarding the lack of existence of such a
structure is to offload all persistence requests to the backhaul part of the network.

Unfortunately, this slution is not viable because of many reasdfisst, this solution would assume

that edge resources are continuously connected to DC resources which is not the case in general.
Furthermore, the connectivity delay that would be paid as a penalty of theaafing process would

raise a significant overhead to the computational task that would interact with the storage (even in

a good case 50ms cannot be compared with 1ms). Finally, offloading data to the backhaul would
result to unnecessary utilization ofemetwork capacity.

An elegant solution to the problem of lack of storage relies on the usage of a Distributed Hash Table
(hereinafter DHT). A DHT is a data structure that is created and maintained by many network
participants. Such a structure is usedely today for temporal storage in extremely sophisticated
frameworks such as Consul, etcd, etc. The challenge irPtRstoCloucparadigm is that this
structure mustoperate on top ofdecentralizeddynamicnetworks. A network that consists of nodes

that formulatetemporal connections with its adjacentand in parallel do not rely on a central node

F 2 NJ N2 dzi ingsh netwarlQTre requirerRenttf being operational on top of mesh networks
raisesmany challenge such as) how edge resources join seamlessly in a mesh usingtaaoh
configuration?b) how resources are globally addressable taking under consideration that mesh
networks may split or join on demand?how parallel reads and writes are handled inamsistent

way? andd) how PrEstoCloudomputation tasks make use of the storage API?

All theserequirementscan besatisfed using acombinationof protocols in a layered mannehat

are encapsulateth a secalledPrEstoClouddevice StackPDS)PDS iasoftwarepackage that upon
installation performs all appropriateonfigurations sathat an edge resourcés able to accept
computational tasks and in parallel ableimderact with the DHT that is member ofhe cornerstone
technologies that have beersad in order to realize PC¥®e a) the 802.11sprotocol (layer2 mesh
networkingprotocol); b) the CIDN®Pv6based routing protocolg) the JPPHlistributed computing
framework, d) the Dockerruntime engineand e) an implementation of theChord DHTprotocol
(Hazelcasy It should be mentioned thahe PDS isurrentlyoperational in Raspberrgased devices
(ARMbased architecture)In the second phase of the project, additional architectures will be
supported.

20186 / 2L NARIKO tAS& 6A0GK GKS NBaLISOGAQ
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1.1 Scope

The scope of this deliverable is to elaborate on the Spatiotemporal Processing capabilities that will
be offered by thePrEstoCloudramework. These capabilities relate to theed that PrEstoCloud
Tasks have for storing and retrieving datasétsm othertasksduring execution of jobs on the edge
devices The majodifficulty that has to be tackled is that edge devices lm@sely connectedand

thus theycannot rely on an existing storage protocttat is usable in reliable data centers. The
alternative of sending and requesting data during a task execution to a datacenter is a priori
unacceptable since it wouldhdically increase the delagand thetraffic between the edge (also
addressed agronthaul in the telecommunicationsjargon)and the datacenter (also addressed as
backhau). This problem is illustrated on the figure bel@vigurel.l).

Traditional Model of Big Data Processing | Presto Cloud Edge Processing Model
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Figurel.l Lackof reliablelow-latency storage during task execution the Edge

In order to achievefficient andtransactionalstorage of data durin@rEstoCloudask executiora
PrEstoCloudspatio Temporal LibraryhereinafterPST) has been developed which cée used
unconditionally by anyprEstoCloud ask that is executed on an Edge Device. The storage library is
responsiblefor storing and retrieung key-value sets with consistency guarantees irrelevant to the
dynamicity of the environment. To do so, a lag@rapproach will be followed which will be
elaborated in detail.

1.2 Relation to PrEstoCloud Architecture

As it can be illustr&d onFigurel.2 (seeDeliverable D2 ]), PSTL librang positioned on th&levice
layer. More specificallythe libraryis part ofa complex device stackhat is provided during the
onboarding of a device to a Mesh network.he PrEstoCloudevice StacKhereinafter PD$ is
responsible taundertake many functionalities such aglayer2 connectivityon a mesh networkb)
layer3 IP addressautoconfiguration (avoiding static IP configuratiom), monitoring d) the
installation of the managemeragent (i.e. onloading/offloading Agent) agjithe initiation of PSTL.
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Figurel.2 The logicapositioning of the PSTL library

Although the purpose of the deliverable is to shed light on the Spatio Temporal Library the entire
PrEstoCloudevice Stack will be briefly explained in order to achieve maximum comprehension
from the reader.

1.3 Structure

Thedeliverableis structured as follows:

T / KFLISNI v gAff StFo2NIGS 2y
a02Nr3S adNUzOGdz2NB 2y G2L) 27
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0dKS LN
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2otSY
¢c2LRf 2

building and maintaining such a structunéll be analyzed The cornerstone technology of
such structures is the usage Distributed Hash TableghereinafterDHT)

Chapter 3 will provide a state of the art analysis regarding the problem that has been raised

above. More specifically, existing tagfuesfor building and maintaining DHTs on top of

structured and unstructured networks is provided

Chapter 4 is dedicated to the analysis of festoCloudevice Stack (PDSAs it will be
explained, part of the PDS is the PSTL per se. Yet the staiitewill be elaborated.

Chapter Sconcludeshis deliverable.
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2.1 Temporal Data Storage during PrEstoCloud Task execution

The aim of théPrEstoClougroject is to deliver aefficientreal-time streamprocessing framework
tailored for edge resources. Based on thime of the most critical aspects the selection of an
appropriatedistributed computing frameworkwhich will be extended in order to include advanced
resource management policies. In the framePoEstoCloudthe JPPF framewodkhas been selected
based ortwo main reasons The first has to do with its ability to be usedresource limiteddevices
andsecond relates to itability to be able to dynamically expandnd shrinkits processing nodes
(workers) in a faultolerant way.

According to the JPPF terminologyhich is defacto adopted ifPrEstoCloudeach processing Job is
splitin several Task$at can be executed in parallel since they have distinct execution contexts i.e.
non-correlated inputs. These tasks are dynamically allocated to cluster nodes which are part of the
edge resources. In the frame BfEstoClouthe JPPF framework had to beexded in various ways
since theTaskallocation policy has to consult thiwad predictionmodule During the execution of

a taskthere is a need for persistence in order for the task to store intermediate or final results that
are accessible/observable byl tasks that belong to the same job. This flow is depicted on the figure

below.

Streaming Input (by an Edge Device)

rUOo0000+

— { PrEstoCloud App |_. o ”'Z\J'V -
restolo
Task creation

Presto
Load
ST L Cluster
Prediction
Manager
t

i

i

i

:

i

i

:

i

i
Monitoring |«

! }

new new new ’
Task() Task() Task() .

Task scheduling based on
predicted load

4 0

\Mesh Network /

Task submission Thel

Read/Write
across Tasks

Figure2.1 Lackof reliable lowlatency storage during task execution on the Edge

1 https://www.jppf.org
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As illustrated, aPrEstoCloudapplicationis processing a streaming input and based on a specific
business logidt performs segmentation of the inputin order to process it in parallelThe
segmentation business logi performed through thextension of a base clasghich is addres=d
PrEstoJob

Processing per se is performed &yother classwhich must extend the clasBrEstdask In other
words, PrEstdoband PrEstd askare extended JPPF classesl onePrEstoJolronsists of multiple
PrEstoTask During the execution of therEstoTaska developer may store and retrieve results that
should be queryable by other tasks. Such persistence storage should offer pure decentralization,
scalability, transactional guarantees and faolerance. To achieve these requirements the
temporal storage will rely on eeference implementation of a Distributed Hash Tablas we will

see, such a structure has inherent distribution aalabilityproperties; yet it is rather difficult to

be maintained within a loosely coupled topologfyedge deices Such a network topology where
nodes are temporarily connectedthout any form of centralized management is addressed as Mesh
Network.

2.2 DHTs at a glance

ADistributed Hash Table is a class of decentralized distributed system that provides a lovfwe se
similar to a hash table; (key, value) pairs are stored in the DHT, and any participating node can
efficiently retrieve the value associated with a given key. Responsibility for maintaining the mapping
from keys to values is distributed among the nedi such a way that a change in the set of
participants causes minimal amount of disruption.This allows DHTs &caleto extremely large
numbers of nodes and to handle contimusnode arrivals, departures, and failures.

DHTSs form an infrastructure that can be used to build more complex services, such as distributed file
systems, peeto-peer file sharing and content distribution systems, cooperative web caching,
multicast, anycast, domain name services, and instant masgagocial applications etc. Notable
distributed networks that use DHTs include BitTorrent's distribtitacker, the Kad networkyaCy,

and the Coral Content Distribution NetwdiX.

2.2.1 History

Research orDHT was originally motivated, in part, pgerto-peer systems such as Napster

Gnutell®, and Freenét which took advantage of resources distributed across the Internet to provide

useful applicatios. In particular, they took advantage of increased bandwidth and hard disk capacity

to provide afile sharing service. These systems differed in how they found the data their peers
contained Napster had a central index server: each node, upon joining, would send a list of locally
KStR FAfSa (2 GKS ASNBSNIE ¢ KAKKNIWSNE Ri 2LISINFS N2 RiS
the results. This central component left the system vulnerable to attacks and lawsuits.

Gnutella and similar networks moved to a flooding query modelessence, each search would

result in a message being broadcasted to g\a@her machine in the network. While avoiding a single

“http://bitconjurer.org/BitTorrent

3http:// yacy.net/Technology.html

“http://www.napster.com

5> Gnutella Protocol Specificatidmitp://wiki.limewire.org/index.php?title=GDF
®http://freenetproject.org/
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point of failure, this method was significantly less efficient than Napster. Moreover, Freenet was also
fully distributed, but employed a heuristic kéyased routing in which each file was associatgith

a key, and files with similar keys tended to cluster on a similar set of nodes. Queries were likely to be
routed through the network to such a cluster without needing to visit many peers. However, Freenet
did not guarantee that data would be found.

Onthe other hand, Distributed Hash Tables use a more structureebkegd routing in order to
attain both the decentralization of Gnutella and Freenet, and the efficiency and guaranteed results
of Napster. One drawback is that like Freenet, DHTs only iregbport exacmatch search, rather

than keyword search, although such functionality can be layered on top of a DHT.

From 2001 to 2004, six system&€AN 3], Chord4], Pastn[5], Tapestn|6], Kademlid7] and Viceroy

[8] T ignited DHTs as a populegsearch topic, and this area of research remains active. Outside
academia, DHT technology has been adopted as a component of BitTorrent and in the Coral Content
Distribution Network.

2.2.2 DHT Properties
DHTSs characteristicalfgature the following properties:
1 Decentralization the nodes collectively form the system without any central coordination.
9 Scalability the system should function efficiently even with thousands or millions of nodes.

1 Fault tolerance the system should beeliable (in some sense) even with nodes continuously
joining, leaving, and failing.

A key technique used to achieve these goals is that any node needs to coordinate with only a few
other nodes in the systerg most commonly, O(log n) of the n participamtso that only a limited
amount of work needs to be done for each change in membership.

Some DHT designs seek to be secure against malicious partid@aatsl to allow participants to
remain anonymous, though this is less common than in many other-togeeer (especially file
sharing) systems:inally, DHTs also deal with more traditional distributed systems issues such as load
balancing, data integrity, and performance (in particular, ensuring that operations such as routing
and data storage or retri@ complete quickly).

2.2.3 DHT Principles

The structure of a DHT can be decomposed into several main components. The foundation is an
abstract keyspaceA keyspace partitioninggcheme splits ownership of this keyspace among the
participating nodes. Aogicahetwork then, connects the nodes, allowing them to find the owner of
any given key in the keyspackhis logical network is addresseda®rlay network

Once these components are in place, a typical use of the DHT for storage and retrieval might proceed
as follows. Suppose the keyspace is the set ofdibdtrings. To store a file with givdirenameand

datain the DHT, th&HAL ’ hash of filename is gerated, producing a 16bit key k and a message
put(k,data)is sent to any node participating in the DHT. The message is forwarded from node to
node through the overlay networlintil it reaches the single node responsible ey kas specified

by thekeyspace partitioningThe appropriate node stores the key and the data. Any other client can
retrieve the contents of the file by again hashing filename to produgied asking any DHT node to

" https://en.wikipedia.org/wiki/SHAL
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find the data associated witkwith a messagget(k). The messge will again be routed through the
overlay to the node responsible f&r which will reply with the stored data.

These principles are depicted Bigure2.2 where the inner circle represents the physical topology

of the mobile nodes while the outer circle represents the DHT overlay. The general idea is that every
node that is registered to the DHT is able to publish and retrieve data. Please notbdlstme

Hash function that is used for node registration in the overlay is used for data registration. This is
very crucial since it is related to the keyspace partitioning.

Node ™ ogistered to DHT)
1Dy

=) Get( Hash(‘test.jpg’))

Hash() Consistent Hash Function

—=-= Physical Connection
——— Registration to DHT

--) PUT/GET
Figure2.2 DHT overview

Thekeyspace partitioningand overlay networkcomponents are described below with the goal of
capturing the principal ideas common to most DHTs; many designs differ in the details.

2.2.3.1 Keyspace partitioning

Most DHTs use some variant afnsistent hashirgy[10] , to map keys to nodes. This technique
employs a function §,k2) which defines an abstract notion of the distance from keyo keyka,

which is unrelated to geographical distance or network latency. Each node is assigned a single key
called its idetifier (ID). A node with IDowns all the keykn for whichiy is the closestD, measured
according to.  Gn,[n)-

In order to make keyspace partitioning clearéat us consideran example from a real DHT
implementation. The Chord DHT treats kagpoints on a circleand! §,k) is the distance traveling
clockwise around the circle frokato k.. Thus, the circular keyspace is split into contiguous segments
whose endpoints are the node identifiersiilfandi, are two adjacentDs, then the node wh IDi,

owns all the keys that fall betweedn andi.. Thisis depicted inFigure2.3 where a Chord DHT is
bootstrapped. The DHT is configured to have replication factor equals to two. This practically means
that every keyalue pair that is assigned to the nedesponsible is automatically assigned to the
next two successors in the overle§o, if a keyalue pair with key:K is stored (e.g. by néde)eto the
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DHT and A<K<B then the authoritative physical node that must store this pair is the one that has
Hash(NodelD)=B. Because of the replication factor, nodes B,C and D store keys igetu s

Kev K

- @"-. -
)
/ @ % 3™
! i Nodes B, ¢
V' 1 andD store
. keysm
i range (A.B)

. 7 i mcluding
\ Y K

Figure23/ K2 NRQa {828aLl OS LI NIAGA2YAY3

Consistent hashing is based on mapping items to a real angle (or equivalently a point on the edge of
a circle). Each of the available machines (or othaiage buckets) is also pseuwdandomly mapped

on to a series of angles around the circle. The bucket where each item should be stored is then

chosen by selecting the next highest angle which an available bucket maps to. The result is that each
bucket conains the resources mapping to an angle between itself and the next smallest angle.

If a bucket becomes unavailable (e.g. because the computer it resides on is not reachable), then, the
angles it maps to will be removed. Requests for resources that would inapped to each of those
points nhow map to the next highest point. Since each bucket is associated with many pseudo
randomly distributed points, the resources that were held by that bucket will now map to many
different buckets. The items that mapped tbe lost bucket must be redistributed among the
remaining ones, but values mapping to other buckets will still do so and do not need to be moved.

A similar process occurs when a bucket is added. By adding an angle, we make any resources
between that andhe next smallest angle map to the new bucket. These resources will no longer be
associated with the previous bucket, and any value previously stored there will not be found by the
selection method described above. The portion of the keys associated waith leucket can be
altered by altering the number of angles that bucket maps to.

Consistent hashing has the essential property of minimal disturbance of the network during removal
or addition of nodes since topologghanges affect only the set of keys owneyl the nodes with
adjacent IDs, and leaves all other nodes unaffected. On the other hand, in traditional hash tables
addition or removal of one bucket causes nearly the remapping of the entire keyspace. Since any
change in ownership typically correspondsbandwidthintensive movement of objects stored in

the DHT from one node to another, minimizing such reorganization is required to efficiently support

20186 / 2L NARIKO tAS& 6A0GK GKS NBaLISOGAQ
14



PrEstoCloud GA 732339 Deliverable D3.9
Gt N2l QGAGBS [/ t2dzR wSaz2dzNDSa al-¢hk¥SYSyYydA SHOIKKSNPASSaXEBEE ST-

high rates of churn (node arrival and failure). The most common consistent Hashing function is SHA
1.

2.2.3.2 Overlay Network

Each node maintains a set of links to other nodes (its neighbors or routing table). Together these
links form the overlay network. A node picks its neighbors according to a certain structure, called the
network's topology.

All DHT @apologies share some variant of the most essential property: fokagl, each node either
knowsa nodelD which ownsk or has a link to a node whose not&is closer td, in terms of the
keyspace distance defined above. It is then easy to route aageds the owner of any keyusing

the following greedy algorithm (that is not necessarily globally optimal): at each step, forward the
message to the neighbor whodb is closest tdk. When there is no such neighbor, then we must
have arrived at the closest node, which is the ownek a defined above. This style of routing is
sometimes called kelpased routing.

Beyond basic routing correctness, two important constraints on the tgpohre to guarantee that

the maximum number of hops in any route (route length) is low, so that requests complete quickly;
and that the maximum number of neighbors of any node (maximum node degree) is low, so that
maintenance overhead is not excessive c@irse, having shorter routes requires higher maximum
degree. Some common choices for maximum degree and route length are as follows nvigére
number of nodes in the DHT, using Big O notatgmeTable3-1):

Degree O(1), route length Q)(

Degree O(log), route length O(log/ loglogn)
Degree O(log), route length O(loq)

Degree QX£), route length O(1)

The third choice is the most common even tigh it is not quite optimal in terms of degree/route
length tradeoff, because such topologies typically allow more flexibility in choice of neighbors. Many
DHTs use that flexibility to pick neighbors which are close in terms of latency in the physical
underlying network.

T
1
T
1

Maximum route length is closely related to diameter: the maximum number of hops in any shortest
path between nodes. Clearly the network's route length is at least as large as its diameter, so DHTs
are limited by the degree/diameter tradefofhich is fundamental in graph theory. Route length can

be greater than diameter since the greedy routing algorithm may not find shortest paths.

2.2.3.3 Variations of diverse Implementations

The most notable differences encountered in practical instances of DHT implementations are
discussed below. First of all, several real world DHTs use 128 bit or 160 bit keyspace. Furthermore,
some reaiworld DHTs use hash functions other than SHAL. Addillip in the real world the kely

could be a hash of a file's content rather than a hash of a file's name, so that renaming of the file
does not prevent users from finding it.

Moreover, some DHTs may also publish objects of different types. For exampk;duld be node
IDand associated data could describe how to contact this node. This flexibility allows publication of
presence information and is often used in Instant Messaging applications, etc. In simplelf? isase
just a random number which isrdictly used as kely(so in a 16€bit DHTIDwill be a 160 bit number,
usually randomly chosen). In some DHTs publishing of ntidess also used to optimize DHT
operations.

Redundancy can be added to improve reliability. Teata) key pair can be sted in more than
one node corresponding to the key. Usually, rather than selecting just one node, real world DHT
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algorithms select suitable nodes, witlh being an implementatiorspecific parameter of the DHT. In
some DHT designs, nodes agree to handlerain keyspace range, the size of which may be chosen
dynamically, rather than hardoded.

Some advanced DHTs like Kadefdlid perform iterative lookups through the DHT first, in order to
select a set of suitable nodes and send kjatita) messages onlp those nodes, thus drastically
reducing useless traffic, since published messages are only sent to hodes which seem suitable for
storing the keyk; and iterative lookups cover just a small set of nodes rather than the entire DHT,
reducing useless forwding. In such DHTs forwarding mit(k,data) messages may only occur as

part of a sekhealing algorithm: if a target node receivepu(k,data) message but believes that k is

out of its handled range and a closer node (in terms of DHT keyspace) is khewngssage is
forwarded to that node. Otherwise, data are indexed locally. This leads to a somewHzadlselfing

DHT behavior. Of course, such an algorithm requires nodes to publish their presence data in the DHT
so the iterative lookups can be perfoeu.

2.3 Difficulties in maintaining a distributed key  -value store in Mesh
Environments

In chapter 2.1 the principles of DHTs and the merits that are derived from them were presented.
However, DHTs are designed to operate on the Internet environment and no& dvesh
environment. More specifically, the assumptions that are made by the majority of DHT
implementations which are met by the Internet environment are the following:

Efficient underlay routing & efficient connection establishmerg. assume that aewnodeenters
the overlay in a Chord DHT implementation betweedelandnode2(we remind the reader that
Chords uses a circular overlay topology). Since new segments have been formulatedié®.
newnod&newnodenode? specific keyalue entries have tabe transferred fromnode2 to
newnode This transfer has to be done efficiently without a big communication-sfatost since a
possible query for a specific kéyin the structure may endip at nodel If newnodeis the
correspondhgnode according to theonsistent hashing functiomodelwill consult its finger table
and will propagate the query tnewnode.Consequentlynewnodeshould be ready to respond to
the query performer as quick as possible in order to prevent blocking issues.

Long lasting conndions& stationary peersassume that in the example described abawewnode
SYiSNaA yR tSIFI@Sa (KS (2LRf238 Ayaldlyilfeo ¢KAA
coherency (since mechanisms that handle timeouts duringvedye transfers existhut it would

generate a signaling cost both in the network and the overlay layer. This cost may be insignificant in
fixed networks since a predefined routing scheme exists (see below) but in a Mesh Environment it
would be too expensive.

Hierarchical routig schemeAssume that in the example described abavede2is notified that
specifickeyvaluepairs must be transferred toewnode HoweverhodeZ2is not aware on howmew

nodewill be reachedi.e. itis not a concernofnode?) a Ay OS LY GSNYySGQa KA SNI N
that the transferable keyalue entry(ies) will be routed toodeX)d RS F Il dzf G 3AF S & |
TCP/IP entries will reach their destination.

Dedicated peersAs explained above, the task of overlay topgl@gnstruction and maintenance is
undertaken by low level mechanisms which in most of the caseseartealized or serientralized
Indicatively, such mechanisms are used in the Gnutella netfddk, in which topology creation

may be achieved by usingpae-defined addresdist of working nodes included within a compliant
client or by using web caches of known nodes, aGratella web caches. Similarly, Chord-pre
assumes that nodes are ordered in a ring and are aware of their successor and predetéssor i
overlay ring topology. Chord also relies on underlying mechanisms for the overlay network
bootstrapping[13] . Infact, p2p protocols are able to react to topology changes (and automatically
re-assign keyalue pairs) but are not responsible for criegt and maintaining the overlay topology.
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This indicative issue, among others, is delegated to some sg®es that are also accessible due to
the hierarchical routing scheme.

Stable network Stable network refers to the backbone network and not to the endpoints that
constitute the DHT peers. A stable backbone netwemkuresthe efficiency of the hierarchical
routing scheme and prevents island formulation. In order to clarify this issuemasthat in the
example ofa dynamic network topology newnodeis connected tanode2through a unique valid
route e.g.newnodenodexnodeynode2and the connection betweenodexand nodeyduring key

value pair transfer is lost. This would result in the formulation of two islands consisting of i) island
1:newnode nodexand all their local neighbors and ii) islandridey node2and all their local
neighbors.

It is obvious that none of th@forementioned assumptions can be considered as granted in a Mesh
environment Nodes are not stationary and links are considered unreliable Egere 2.4).
Moreover, there is no form of centralization and no dedicated peer in order to coordinate overlay
construction. Consequently, the construction and maintenance of the overlay must be accomplished
in an adhoc mode.

unreachable nodes

\ movement network split O

-
-~ unstable
connections

weak or unreliable nodes

Figure2.4 Mesh Networking Environment

Furthermore, low level routing among nodes is an important issue since no predefined routing
scheme can be taken for granted. Therefore, alternative routing policies have to be adopted. Such
routing protocols will be described at chap#£.3

Finally, the most critical problem is the lack of topological hierarchy which results in loosely
temporarily created graphs. Such graphs (a.k.a. islands) of interconnected nodes may merge and split
according to the current topology. This affects signifibathe DHT operation. E.g. assume that in

two existing separate islands, as depicted~gure2.5,the Chord protocol has bootstrapped. The
mechanismghat have been usetly Chord to bootstraglo not work in thisexample. According to

Chord all participant nodes are directed to circular overlay topology for both islands. Assume that
one node from one island committeput(key,valug) and another node sim the other island
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committed in his circle/DHput(key,valug). In the next step, the nodes that comprise the two
islands come closer and formulate one big island [Sgare2.6).

Figure2.5 Two islands before they merge

Figure2.6 Two islands already merged

The goal that has to be achieved after merging is the efficient identification of the responsible node
that maintains the value okey: after the query of a thireparty node. Normally, according to the
DHT consistency principle, values should be mergedaapdssibleget(key) should result in the

20186 / 2L NAIKG fASa 6AGK (KS NBaLISOGAD
18



PrEstoCloud GA 732339 Deliverable D3.9
Gt N2 OGA@BS /t2d2R wSa2dz2NDSa al-¢xdESYSyd S5HIHKSENPASSaAaFEBE ST

multi-value responsealue-valug. However, a successful response-pesumes that DHT signaling
has been completed. On the other hand signaling is of minor importance for DHTs that are
bootstrapped on fixed netarks but it is considered too expensive for Mesh Environments.

Moreover, nodesplitting is a scenario where DHT consistency is not guaranteed. E.g. assume that

the big island oFigure2.6 splits in two sukislands ofigure2.5. Suppose that a specific keyalus

pair ispublished, the DHT protocol is Chord and ashOf(key=130. According to Chord algorithm

the responsiblenode for storing this pair is the successor node of 130 i.e. node 140 in our case. It

must be clarified here, that node 140 actually means node #WabkhOf(NodelD)=14@here NodelD

is something common among the nodes e.g. their MAC address. According to the splitting scenario,
0KS LIKeaAOlf G2LRf238 Aa aLXAd FyR y2RS mnn 0Sf
the resultbe whenno QT pQ FNRBY (KS geNteyHThe ahsivér syl fnde irO2 Y Y A (i 2
GKS W2NIQy3ISQ AaftlryR GKS FdziK2NAGFGABS y2RS T2NJ
of 130). Node 190 has no info about key

Similarly, assume that duriqmyt(key,valug) (and before splitting up) there was a redundancy policy

and the keyvalue pair was stored to its successor and to the next node (one node for redundancy).

After the splitdzLJE 6 KSYy Y2 RS QT ®Q F N det(kéyy the rashili-wsiddde A at I yF
value. So, redundancy is the key parameter as far as network splitting is concerned. Consequently,
merging and splitting, in general, results in significant signaling cost on Mesh environments.
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3.1 Comparison of dominant DHT implementations

As already described, DHTs belong to the category of structured peer to peer systems according to
which the location information of databject is placed deterministically atspecific peer identified

08 (KS RI G 20 2-$Ha56adeiteniztfavdjtiz8dvantage of candistent assignment of
data-objects to the nodes that constitute the network.

As it is clarified up to now,atia objects are assigned unique identifierdexkeys, chosen from the

same identifier space. Keys are mapped by the overlay network protocol to a unique live peer in the
overlay network. The P2P overlay networks support the scalable storage and retrifkey walue}

pairs on the overlay networkas illustrated inFigure 3.1. Given a key, a store operation
put(key,valuegand a lookup retrieval operatiomalue=get(keygan be invoked to store and retrieve

the data object corresponding to the key, which involves routing requests to the peer corresponding

G2 GKS (1Sed 9FOK LISSNI YIAYyldlIAya | avYlff NRdziAY:
and network addresss. In the case of MESH networksentralized routing protocols cannot be

utilized Lookup queries or message routing requests are forwarded across overlay paths to peers in

a progressive manner utilizing the NodelDs that are closer to the key in thefidespace.

Distributed Structured P2P Overlay Application

API Interface: API Interface: API Interface:

Put(Key Value) Remove(Key) Value=Get(Key) Value
Distributed Hash Table
I =
Peer | Peer ' Peer Peer

_-"" l"\-._ r o r \-_ _z"

Figure3.1 Application Interface for Structured DHbased P2P Overlay Systems

Different DHTbased systems have different organization schemes for the data objects and
their key space and rointg strategies. In theory, DHbRsed systems can guarantee tlzaty data
object can be located i®(logN Joverlay hopon average, wherdl is the number of peers in the
system. The underlying network path between two peers can be significantly diffeoemtiie path
on the DHIbased overlay network. Therefore, the lookup latency in DBSed P2P overlay
networks can be quite high and could adversely affect the performance of the applications running
over it.[14] provides an elegant algorithm that achieves nearly optimal latency on graphs that exhibit
power-law expansionil5] , at the same time, preserving the scalable routing properties of the DHT
based system.

DHTFbased systemEL0] are an important class of P2P routing infrastructures. They support the rapid
development of a wide variety of Internstale applications ranging from distributed file and naming
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systems to pplicationtlayer multicasting. They also enable scalable, veide retrieval of shared
information. In 1999, Napster pioneered the idea of a peemeer file sharing system supporting a
centralized file search facility. It was the first system to recogthat requests for popular content
need not to be sent to a central server but instead it could be handled by many peers that have the
requested content. Such P2P {fharing systems are sei€aling in that as more peers join the
system, they add tohte aggregate download capability. Napster achieved thisssaling behavior

by using a centralized search facility based on file lists provided by each peer, thus, it does not require
much bandwidth for the centralized search. Such a system has thedésigingle point of failure

due to the centralized search mechanisiowever, a lawsuit filed by the Recording Industry
Association of America (RIA#)yced Napster to shut down the filgharing service of digital music

T literally, its killer applicatio.

However, the paradigm caught the imagination of platform providers and users alike. Gnutella is a
RSOSYGNI tAT SR &aeadsSy GKFG RAAGNROGdzGSa 020K &St
overlay network of peers. It is the first system that makse of an Unstructured P2P overlay
network. An Unstructured P2Psystem is composed of peers joining the network with some loose
rules, without any prior knowledge of the topologhhe network uses flooding as the mechanism to
send queries across the oveylwith a limited scope. When a peer receives the flood query, it sends

a list of all content matching the query to the originating peer. While flootimged techniques are
effective for locating highly replicated items and are resilient to peers joimddeaving the system,

they are poorly suited for locating rare items. Clearly this approach is not scalable as the load on
each peer grows linearly with the total number of queries and the system size. Thus, Unstructured
P2P networks face one basic prabtepeers readily become overloaded, therefore, the system does
not scale when handling a high rate of aggregate queries and sudden increase in system size.

Although Structured P2P networks can efficiently locate rare items since thbdsey routing is
salable, they incur_significantly higher overheads than Unstructured P2P netwforkpopular
content. Consequently, over the Internet today, the decentralized Unstructured P2P overlay
networks are more commonly used. However, there are recent efforts grbged Routing (KBR)

API abstractionfl6] that allow more applicatiorspecific functionality to be built over this common
basic KBR API abstractions, and OpenHash (Open publicly accessible DHT1S& thiaeallows the
unification platform of providing developers with basic DHT service models that runs on a set of
infrastructure hosts, to deploy DH¥ased overlay applications without the burden of maintaining a
DHT and with ease of use to spur the depleyiinof DHTbased applications.

In contrast, Unstructured P2P overlay systems areHAd in nature, and do not present the
possibilities of being unified under a common platform for application developmaritable3-1,

we will describe the key features of Structured P2P and Unstructured P2P overlay networks and their
operational functionalities. After providing a basic understanding of the variousaygeschemes in
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these two classes, an evaluation of these schemes is proyiddollowed by some comparative
results based on the following attributes:

91 Decentralization: examine whether the overlay system is distributed.
Architecture: describe the oveglasystem architecture with respect to its operation.
Lookup Protocol: the lookup query protocol adopted by the overlay system.
System Parameters: the required system parameters for the overlay system operation.
Routing Performance: the lookup routing prot performance in overlay routing.

Routing State: the routing state and scalability of the overlay system.

= =4 =4 =4 4

Peers Join and Leave: describe the behavior of the overlay system when churn and self
organization occurred.

=

Security: look into the securityulnerabilities of overlay system.

1 Reliability and Fault Resiliency: examine how robust the overlay system when subjected to
faults.

Although all protocols that areliscussedn Table3-1 are candilate onesfor being adopted in
PrEstoCloudloud, the architectural simplicity of Chord alonggit®d performanceunder mobility
scenariog19] urged us to select it as the cornersmfor implementation.
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Table3-1 Comparison of Structured P2P approaches

Algorithm

Taxonomy

Structured P2P Overlay Network Comparisons

CAN

Chord

Tapestry

Pastry

Kademlia

Viceroy

Decentralization

DHT functionality on Interndike scale

Architecture

Multi-dimensional

ID coordinate space.

Unidirectional and

Circular NodelD
space.

Plaxtonstyle
global mesh
network.

Plaxtonstyle global

mesh network.

XOR metric for
distance

between points

in the key space.

Butterfly network
with connected ring
of predecessor and
successor links, data

managed by servers.

Lookup Protocol

key,value pairs to
map a point P in

the coordinate space
using uniform hash

function.

Matching Key and
NodelD.

Matching suffix in
NodelD.

Matching Key and
prefix in NodelD.

Matching Key and

NodelID based
routing.

Routing through levels
of tree until a

peer is reached with
no downlinks; vicinity
search performed

using ring and level ring
links.

System N-number of peers N-number of peers | N-number of peers| N-number of peers | N-number of peers N-number of peers
Parameters in networkd-number | in network. in networkB-base | in networkb-number | in networkb-number | in network.
of dimensions. of of bits 8= 2) used | of bits (8= 2) of
;{gsniir;izsr?n PEET | for the base of the NodelD.
chosenidentifier.

Routing 6116 o
Performance | § 'O~ 6 o€ Qo 617 ¢ G171 ¢ where 6 o€ Qo

¢ = small constant
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Routing State cQ a € Qo 117 ¢ 611 ¢ 611G |61 1T ¢ 6 a € Q0

- . - - i1 ¢ @owhere ]
Peers Join/Leave ¢Q a € Q0 11 ¢ I'1T ¢ a € "Q0
¢ = small constant

Security Low level. Suffers from man-middle and Trojan attacks.
Reliability/Fault | Failure of peers will | Failure of peers Failure of peers Failure of peers Failure of peers will | Failure of peers will
Resiliency not cause network | will not cause will not cause will not cause not cause network not cause network wide
wide failure. Multiple networkawide networkawide networkawide failure. wide failure. Load_mcurred by
. . . . . . lookups routing evenly
peers responsible failure. failure. Replicate . failure. Replicate
Replicate data acrosg —
. . data across . distributed among
for each data item. Replicate data on : . data across multiple
multiple peers. multiple peers. Keep articioating looku
On failures, multiple consecutive | Keep track of peers. P pating P

track of multiple servers.

application peers. On failures, multiple paths
: pathsto each peer.
retries. . .

applicafon retries.
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3.2 Chord protocol in a more detailed view

Chord[4] uses consistent hashinj0] to assign keys to its peers. Consistent hashing is designed to let peers
enter and leave the network with minimal interruption. This decentralized scheme tends to balance the load
on the system, since each peer receivesghly the same number of keys, and therditite movement of

keys when peers join and leave the systéma steady state, for N peers in the system, each peer maintains
routing state information for about only O(logN) other peers (N number of pedh®igystem). This may be
efficient but performance degrades gracefully when that information isaftdate.

The consistent hash functions assign peers and data keyslahidentifier using SHA [20] as the base

KFakK FTdzyOGA2y o 14335 SANDaK AR Y IR FTAKSINI WSS NIXKEZ Lt | RRNE
by hashing the data key. The length of the identifieYirfust be large enough to make the probability of keys
hashing to the same identifier negligible. Identifiers are ordered oidantifier circle modul®m.Keyk is

assigned to the first peer whose identifier is equal to or follows k in the identifier space. This peer is called
the successor peer of key k, denoted by successor(k). If identifiers are represented as a circleass numb
FNRY n G2 HY b mX (KSy adz00S&ada2Nbl0 Aa GKS FTANAGDG

The identifier circle is termed as the Chord ring. To maintain consistent hashing mapping when a peer n joins
the network, certain keys previously assignech®d & dzO O S adaa?bblieasdgded 16.S\den peen

f SFgSa GKS / K2NR aeadsSyx |ttt 2F Ada Fraar3adySR (Sez
leave the system with (logRiperformance(i.e. exchanged messageblo other changes of keys assignment

to peers need to occur. IRigure3.2(adapted from[4]), the Chord ring is depicted with m = 6. This particular

ring has ten peers and stores five keys. The successor of the identifier 10 is peer 14, so key 10 will be located
at NodelD 14. Sinaitly, if a peer were to join with identifier 26, it would store the key with identifier 24 from

the peer with identifier 32.

Each peer in the Chord ring needs to know how to contact its current successor peer on the identifier circle.
Lookup queries invoé/the matching of key and NodelD. For a given identifier, queries could be applied
around the circle via these successor pointers until they encounter a pair of peers that include the desired
identifier; the second peer in the pair is the peer the quenypsito. An example is presentedhigure3.2,
whereby peer 8 performs a lookup for key 54. Peer 8 invokes the find successor operation for thisiéey, w
eventually returns the successor of that key, i.e. peer 56. The query visits every peer on the circle between
peer 8 and peer 56. The response is returned along the reverse of the path.

As m is the number of bits in the key/NodelD space, each peeaintains a routing table with up to m
entries, called the finger table. THeéntry in the table at peer n contains the identity of the first peer s that

it least2" bplositions after ron the identifier circle, i.e. s = successor(M+®> ¢ K SKBY dv tH8 SINJ &
i finger of peer n (n.finger[i]). A finger table entry includes both the Chord identifier and the IP address (and
port number) of the relevant peer.

Figure3.2 shows the finger table of peer 8, and the first finger entry for this peer points to peer 14, as the
latter is the first peer that succeeds (8+20) mod 26 = 9. Similarly, the last fingeerod peints to peer 42,

i.e. the first peer that succeeds (8 + 25) mod 26 = 40. In this way, peers store information about only a small
number of other peers, and know more about peers closely following it on the identifier circle than other
peers. Also, RJSSNDa FAYIASNI Gl ot S R2Sa y20 O2yil Ay Sy2dzaK
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an arbitrary key k. For example, peer 8 cannot determine the successor of key 34 by itself, as successor of
GKA& 1S@ O0LISSNIoyl0 A#blg/20 LINBaSyid Ay LISSNIyQa FAyY

K54 _—— N4 i

k3o Finger Table

N8+1 N14
N8+2 N14
“"N8+4 N14
IN8+8 N21
N8 + 16 N32
N8 + 32 N42

Figure3.2 Chord Ring of 10 peers and 5 kelue pairs.

When a peer joins the system, the successor pointers of some peers need to be changed. It is important that
the successor pointers are up to date at any time because the correctness of lookups is not guaranteed
otherwise. The Chord protocol uses a stahtlian protocol[4] running periodically in the background to
update the successor pointers and the entries in the finger table. The correctness of the Chordlpeiies

on the fact that each peer is aware of its successors. When peers fall, it is possible that a peer does not know
its new successor and it has no chance to learn about it. To avoid this situation, peers maintain a successor
list of sizer, which@ y (i F A ya ( K8&uccedSo&ND A FANA G

When the successor peer does not respond, the peer simply contacts the next peer on its successor list.
Assuming that peer failures occur with a probability p, the probability that every peer on the successor list
will fail is p. Increasing makes the system more robust. By tuning this parameter, any degree of robustness
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with good reliability and fault resiliency may be achieved. The following applications are examples of how
Chord could be used:

1 Cooperative mirroring or Cooperative File System ({ZFE)in which multiple providers of content
O221LISNI 4GS (2 &aG2NB IyR aSNBS SIOK 20KSNBRQ Rl
hosts lowers the total cost of the system, since eachigipant needs to provide capacity only for
the average load, not for the peak load. There are two layers in CFS. The DHash (Distributed Hash)
layer performs block fetches for the peer, distributes the blocks among the servers, and maintains
cached and rglicated copies. The Chord layer distributed lookup system is used to locate the servers
responsible for a block.

1 Chordbased DN$22] provides a lookup service, with host names as keys and IP addresses (and
other host information) as values. Chord coutdyide a DNdike service by hashing each host name
to a key[10]. Chordbased DNS would require no special servers, while ordinary DNS systems rely on
a set of pecial root servers. DNS also requires manual management of the routing information (DNS
records) that allows clients to navigate the name server hierarchy; Chord automatically maintains
the correctness of the analogous routing informati@NS only worksvell when host names are
hierarchically structured to reflect administrative boundaries; Chord imposes no naming structure.
DNS is specialized to the task of finding named hosts or services, while Chord can also be used to find
data object values that ameot tied to particular machines.

3.3 Chord protocol on top of a dynamic network topology

The PrEstoClougbroposed approach aims at the provision of a generic framework that will facilitate the
design and development of autonomic and decentralized servicésesh networks (see Figu#l). The
introduction of the different layers of the proposed approach is necessary due to the need to address the
following challenges: a) efficiently utilize available network resources in a dynamic environment, b) provide
sewices independently from the underlying topology, ¢) ensure reliability of services in case of network
topology changes and d) reduce the management complexity and increase flexibility to application
developers. In order to address these challenges, autiodunctionalities have to be incorporated. The
following self* properties have been definef23] and should be supported by an autonomic system:-self
configuration, selptimization, seHawareness and selfiealing.

Existing protocols that satispartially the challenges described above were considered during the design of
the proposed approach. There is no existing work on how to combine existing protocols for achieving
autonomic service provisioning and how different protocols could interactgupiedefined interfaces.
Taking into account these considerations, the proposed approach is focusing on a) defining concrete layering
for enabling autonomic service provisioning in Mesh networks, b) specifying the discrete functionality of each
layer and be interfaces between them and c) resolving conflicts between existing protocols, specifically in
the field of the overlay topology construction.

The creation and maintenance of an overlay topology that logically interconnects all the participating nodes
in the physical network is critical in our approach. Any node that connects to the@detwork has to join

to the overlay network. The overlay network is formulated during the topology stabilization phase in an
autonomic manner and hides any details bétunderlying physical infrastructure, e.g. link establishment or
torn down, node failures, node mobility, etc. In case of multiple changes in the physical topology, the overlay
network is able to adapt quickly to the new environment-¢tabilization). Frthermore, recovery from
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failures can be easily achieved based on information that is available in the network. All these tasks are
realized without the intervention of the network administrator.

Autonomic Network
Autonomic deployment Monitoring and Multimedia services on mobile
and operation of sensor Management terminals (e.g. video on demand,
networks chatting, file sharing etc.)
Deployment of
abstract Services

®— -
Node 1 - .

Ol

overy @ T
Network e 2 q
A o '

Mobile Ad-hoc Node A

Network

Node C

Figure3.3 Serviceshat rely on an operational DHT in dynareitvironment

After the overlay network is established, participating nodes are able to store and retrieve data using typical
p2p protocols. Every node that wishes to store a keyvglaé, or query a Viae based on a key, can achieve

it by using a Distributed Hash Table (Df2¥) that operates ortop of the overlay topology. In a similar way,
several applications can be built taking under consideration the existence of a high level API put(key,value)

and get(key) that would interact with a DHT protocol that operatestom of a nonreliable Mesh
environment.

Provided services are designed based on the assumption of collaboration and dissemination of information
among the participating nodes. These sesgican be fully decentralized as data and functionality is allocated

in different nodes at the overlay network. Some functions may be delegated to more than one nodes for
higher reliability. In case of changes or failures, roles may fssigyned autonomasly and performance
guarantees may be assured for the services provision.

We propose a foutayered scheme based on the functionality requirements imposed by the provided
services and the underlying physical networking environment. As shown in Hidytbe following four

layers are defined; iNeighborto-Neighbor layerii) Routing layeriii) Topology Maintenance layeand iv)

DHT layerEach layer has a discrete role, implements different mechanisms and specifies its messages types.
The proposed layered approach is independent from the selection of p2p protocols, topology formulation
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mechanisms and routing protocols. Therefore, any coration of different protocols may be selected and
proper adaptations may be proposed.

4 ! Business I ! )
Layer | . | Interface/Events | Simulation
1 Logic I I
. | Develop any | | . . .
Autonomic | application using only | | Visualisation
Application put(x.y) and get (x) Service
I functions I |
| } put(x,y) get(x) }
DHT | Assurethatpublished | |
el | key-values are properly | | Chord
¥ I s I DHT_Stabilize() I
} }—{ getRelativePosition() |— e SEbiiza0 }
I
Topology | _ I poogY- | Adapted T-MAN &
Maintenance | reitveeﬂ;y g;g}g; © |  Tree-based
Layer | | | Approach
} } Il getRoutinglnfo() }—{ route_Packet() } }
Routi | Transferunreliablya | |
outing | packet from one node to | | Adapted DSR
Layer another node (more than
| one hop away) | |
1 } {validateRoulingCaches() H transfer_Packet() } }
f Maintain a valid view of
Nelghbor to | Neighbors & Transfer I | Simulator’s
Neighbor | reliable a packet among | l (PeerSim) library
Layer | neighbors | |
. L 1

B4

Figure3.4 FourLayered Approach

The Neighboto-Neighbor layer is responsible for delivering an uplager frame fran a neighbor to another
neighbor. No information from the upper layer is necessary for the delivery. Two types of messages are used;
i) MAC_SENID order to achieve one way frame delivery from neighbor X to neighbor Y and@) ACk

order to achieve dmowledgment for successful messaggivery from neighbor Y back to neighbor X. Also,

this layer is responsible for maintaining (i.e. initializing and keepintpgate) the routing cache of the
Routing layer since, when neighbimr-neighbor links are eated or destroyed, the related routing
information has to be updated.

The Routing layer is responsible for delivering an uigger frame from a node X to another node Z. It is
assumed that node X is not aware how node Z can be reached. The layeragradstic of the reason that

node X wants to communicate with node Z. This layer relies on routing protocol for frame forwarding across
the network. As we stated in section 3.3, in case of Mesh Environments it is suggested the dgaarhic
routing protocol (will be covered in chapter 4)

The Topology Maintenance layer is responsible for formulating a virtual topology of the participating nodes.
In our case, the desired topology is a ring (imposed by the use of Chord). Consequently, this layer undertakes
the task of identifying the relative position of each node in the overlay topology without being based in
centralized or semtentralized techniques.

The DHT layer is responsible for maintaining a distributed hash table that is bootstrapped over teedtabi
overlay topology. For this purpose any existing DHT protocol may be used. These protocols are (semi or fully)
decentralized andin addition to storage and retrieval functionaktynay succeed load balancing, reduce
bandwidth consumption and improwata reliability across the network. The following interfaces have been
defined for the communication among the different layers:

1 The Neighboto-Neighbor layer provides to the Routing layer routing information for existing
neighbors that is stored in theouting cache of each node, through thalidateRoutingCaches()
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function. The Neighbeto-Neighbor layer provides also medidavel acknowledgments to the
Routing layer for neighbetio-neighbor communication, through theansfer _Packet(junction.

1 The Roting layer provides routing functionality to upper layers through tbetePacket(function.
Additionally, it exposes topology information derived directly from the routing caches to the
Topology Maintenance layer, through trgetRoutinginfo()function. t is up to the Topology
Maintenance layer to utilize this information for optimizing its mechanisms or not.

I The Topology Maintenance layer provides information to the DHT layer regarding the relative
position of a node in the overlay network (e.g. the peedssor and successor in case of a ring
topology) through thegetRelativePositionfunction. In case of changes in the network topology,
stabilization procedures take place in both layers. Tbpology_Stabilizefunction is used for re
ordering the overlay topology (e.g. ring in our case) and trigger®th€_Stabilizefunction that is
used for the reassignment of keyalue pairs that are assigned in the overlay network nodes.

- = — -

v !

0w
k" Y ' Rin
(N) —> [ Stabilization
I <key1,valuei>

T =

Figure3.5 Overlay Topology stabilization & DHT entries stabilization

In Figure4.3, a snapshot of the physical network topology (solid lines) and the logical overlay topology
(dashed lines with arrows) is depicted. Initially, node 3 dussxist in the network and the keyalue pairs

have already been assigned to the network nodes by applications that run on the existing nodes (i.e.
applications that use DHT). Then, node 3 is physically connected with node 1 and node 4 and the
correspondhg overlay topology is updated. It is the responsibility of Topology Maintenance layer to find the
4dz00Saa2N) F2NJ SIOK y2RS® | 26SOSNE A0 Aa-agsBrikeyi KS ¢
gl fdzSa | O0O2NRAY3A (2 thmKS 51 ¢Q& FaaAa3ayyYSyd | f32NA
The Topology Maintenance layer must inform the DHT layer that the relative position for the node in the
overlay topology (e.g. ring in case of Chord) has changed. Then it is up to DHT layer to reassitue key
pairs. This reaassignment will be addssed as DHT +&abilization while the updated knowledge for the
relative position in the overlay topology is called Topology stabilization.
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4.00%001 $ AOBAA 3 0AAE
4.1 Layers of the PDK

Based o Figure3.4 the followingstack has beeproposedto handleefficientlyedge resources

s ~ )
Docker Caonsul
Netdata .
[ J [ Runtime } { Agent
A
s ™
= DHT
w
£ . J
o
e s ™,
=
= CIDNS
L -
I's ~,
Hybrid Wireless Mesh Protocol
| — L A
I ™)

Linux-based 05 with Kernel 4.4+

802.11s5 enabled WiFi Adapter

Figured.1 GranularView of thePrEstoCloudtack

An overview of each layer will be provided followingatom up approach. In the lowest part of the stack
we have a hardware dependency. More specifically802.11senabled card should exisThe reason for
that is that802.11sis one of the latest stadards thatare accepted by the 802.11s standardization group
that offers native mesmetworking capabilitiesAt this point it should be clarified thain the frame of
PrEstoCloudneshnetworking should not beonfused withad-hoc networking In thead-hoc networking
paradigmonly single hogconnectivity is supported; hence all participating nodbsuld be reachable. In the
mesh paradigmmulti-hop links are supported i.e. one node dam linked with two nodes that do not have
reachability amonghem. Thisdifference isalso depicted orFigure4.2. In theframe ofPrEstoClou@d-hoc
capabilities are not enougsincethey support onlysinglehop communicatios.

The mesh networkingtandard is nosupported by the majority of the commercial-fiiadapters. The reader
is prompted to visitthd A y dzE Y S NI St 2 RwhBré tBeicapablithd o direr islistadS As
it can be seen(Figure4.3) a limited set of drivers are developed that incluttee specific networking
capability In the frame of our testbed we used rt28@) driver because ots compatibility in 10T devices.

8 https://wireless.wilki.kernel.org/en/users/drivers

% https://wireless.wiki.kernel.org/en/users/drivers/rt2500usb
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Figure4.2 Meshmodevs Adhoc mode

Manufacturer cfgB80211
ADMtek/Infineon yes
Aironet/Cisco no
Atheros yes
Atmel yes
Atheros yes
Atheros yes
Atheros yes
Atheros yes
Atheros yes
Atmel no

Figure4.3 Meshsupportby existing drivers
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In addition to theusage of a mesknabled hardware device, a proper OS kernel has to be used that is able
to interact with the meskcapable deviceThe kernel that is widely used is callgaen80211% and most of
the modern kernelsre built with this modulelreadyintegrated. Since the 10T devices that will be used in

10 hitps://github.com/o11s/open80211s/wiki/HOWTO
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our pilots are Raspberftbasedwe decided to use Linux kexhv.4+ which is used in all compatible operating
systems i.e. RaspbignUbuntu Cor&, Ubuntu Maté*.

The ability to have meslevel communication si a prerequisite for edge device to edge device
communication. Howevetayer-3 communication per se is not guaranteed by 802.11s protocol since the
protocol is a pure laye® link management protocol. In order to achievellBRsed communication souting

layer must be established. A routing layer cannot relay on a traditional centralized gateway that maintains
routing tables since the topology in a mesh environment is rapidly changing. On top of that, the IP assignment
cannot be static i.e. in case a newdeoarrives it should not consult the existing ones which IPs are reserved

in order to perform an initial assignment. This would not scale. These problems are addressed as dynamic
routing and IP assignment problem.

Both of these problems have been resolved through the incorporationreéetive routing protocol Such

protocol will beoffered through the combination diWMP (see section 4.2 .@%jth CIDN$ee section 4.3)

Both of these will be analyzed below. The idea is that each node isgeutrating an IPv6 address along a
cryptographic keypair. The publikkey along the IPaddressedare exchanged using lay2r based
communication. Upon all exchanges, the mesh pgudicts maintain a local routing table. In case a node

wants to communication with another node that is not laygreachable it initiates a fintbute request

which is propagated through its lay2rpeers. During the message propagation a route is idedtdnd even

stored in the intermediate routes. Although this approach has the penalty oftayerda ¥ 2 2 RAy 3¢ A {
zero configuration and zermaintenance during operation. Also it is immune to topological changes and
topology splits/joins.

On top ofthis layer, a set of layer services are installed. This inclualea Docker runtime engin€ that is
used to manage the dynamic deployment of JPPF Thskse Netdata® monitoring probe that is used to
extract compute anahetwork measurements from the BIE Task executipn) the Consut’ service discovery
agentthat is used taannouncethe nodes existence and also maintain the consistentdadye store andl)
the PrEstoCloudAgentwhich is the daemon that has a twofold raddice on the one hand it proxies the
programmability of all installed components (i.e. join madployJPPRask,set key/valie, get key) and on
the other hand it can be used by any JPPF Task in order to interact with the DHT.

4.2 Mesh Networking

A meshnetwork is defined as two or more nodes that are interconnected via IEEE 802.11 links which
communicate via mesh services and constitute an IEEE 8Baskt wireless distribution system (WDS). A
mesh link is shared by two nodes who can directly commtmiaéth one another via the wireless medium.

A pair of nodes that share a link aneighbours Any node that supports the mesh services of control,
management, and operation of the mesh is a mesh point (MP). If the node additionally supports access to
client stations (STAs) or nemesh nodes, it is called a mesh access point (MAP). A mesh portal (MPP) is an
MP that has a no#®02.11 connection to the Internet arggrves as an entry point for MAC service data units

11 hitps://www.raspberrypi.org/

12 https://www.raspberrypi.org

13 https://www.ubuntu.com/core

14 https://ubuntu-mate org/raspberrypi/

15 https://docs.docker.com/install/linux/dockece/debian/#prerequisites

16 https://my-netdata.io

17 https://www.consul.io/
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(MSDUSs) to enter or exit the megfigured.4). An MPP and MAP may be collocated on one device. The draft
standard® additionally defines options for powaronstrained MPs to be lightweight, in which nodes are able

to communicate only with theineighboursand do not use the distribution system (DS) or provide congestion
control services. It additionally defines a nfmmwarding MP for leaf nodes that can fully operate within the
mesh even if no MAPs are available (which a STA could not do). A mesh network can have one operating
channel or multiple operating channels. A unified channel graph (UCG) is a set of nodewethat
interconnected on the same channel within a mesh network.

Station (STA) )

!

4

OEOn
Intemet
.
# e () ()
=i,
4 )

Mesh Access Point (MAP) g

Figure4.4 IEEE 802.11s terms: A mesh portal connects to the wired Intexmegsh point
just forwards mesh traffic, and a mesh access paidditionally allowsstations to associate with it.

Mesh Portal (MPF) Mesh Point (MF) .@
W

4.2.1 Channel Selection

After initialization, a node uses the Simple Channel Unification Protocol where the MP performs active or
passive scanning of theeighbours If noneighbouringMPs are found, tt MP can establish itself as the

initiator of a mesh network by selecting a channel precedence value based on the boot time of the MP plus
a random number. If two disjoint mesh networks are discovered (i.e., they are on different channels), the
channel ihosen according to the highest precedence value. If the mesh is in the 5 GHz band, the mesh is
required to conform to the regulatory requirements of the dynamic frequency selection (DFS) and radar
avoidance to conform with FCC URIregulation.

4.2.2 Topology Discovery and Link State

Mesh points that are not yet members of the mesh must first perfagighbourdiscovery to connect to the
network. A node scanseighbouringnodes for beacons that contain at least one matching profile, where a
profile consitss of a mesh ID, path selection protocol identifier, and link metric identifier. If the beacon
contains a mesh capacity element that contains a nonzero peerdink the link can be established through

a secure protocb(seeFigure4.5).

18 hitps://standards.ieee.org/findstds/standard/802.12911.html
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Figure4.5 Reference model for WLAN mesh interworking.

Mesh portals bridge the wireless and wired networks. MPPs functidhassa single loofiree logical layer

2 and interconnected layer 3 for both the internal mesh and the external LAN segments. For layer 2, the MPPs
use the IEEE 802.1D bridging standard, and at layer 3, routing must be performed in a similar fashion to IP
gateway routers.

4.2.3 Path Selection and Routing

Within a mesh, all mesh stations use the same path metric and path selection protocol. For both, 802.11s
defines a mandatory default scheme. Because of its extensible framework, they can be replaced by other
solutions. The default metric, termed airtime neNA O A Y RAOF 1Sa | fAy{1Qa 2 @SN
rate, overhead, and frame error rate of a test frame of size 1 kbyte. The default path selection protocol,
Hybrid Wireless Mesh Protocol (HWMP)(seetion4.2.5, combines the concurrent @pation of a proactive
tree-oriented approach with an edemand distributed path selection protocol (derived from the Ad Hoc On
Demand Distance Vector [AODV] proto@i]]. The proactive mode requires a mesh station to be configured

as a root mesh statiorin many scenarios this will be a mesh station that collocates with a portal. As such,
the root mesh station constantly propagates routing messages that either establish and maintain paths to all
mesh stations or simply enable mesh stations to initiateathfgo it. Mesh stations also rely on AODV when

a root mesh station is unavailable. When no path setup messages are propagated proactively, however, the
initial path setup is delayed.

4.2.4 Medium Access Control

For medium access, mesh stations implemdm thesh coordination function (MCF). MCF consists of a
mandatory and an optional scheme. For the mandatory part, MCF relies on the conteatied protocol
known as Enhanced Distributed Channel Access (EDCA), which itself is

an improved variant of the bas 802.11 distributed coordination function (DCF). Using DCF, a station
transmits a single frame of arbitrary length. With EDCA, a station may transmit multiple frames whose total
transmission duration may not exceed the-called transmission opportunitgT XOP) limit. The intended
receiver acknowledges any successful frame reception. Additionally, EDCA differentiates four traffic
categories with different priorities in medium access and thereby allows for limited support of quality of
service (Qo0S).

To enhance QoS, MCF describes an optionatlium access protocol called Mesh Coordinated Channel
Access (MCCA). It is a distributed reservation protocol that allows mesh stations to avoid frame collisions.
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With MCCA, mesh stations reserve TXOPs in the falted MCCA opportunities (MCCAOPs). An MCCAOP
KFa I LINBOA&S &adFNI GAYS YR RdzNY GA2Y YSIF &dz2NBR Ay
sends an MCCA setup request message to the intended receiver. Once established, the mesh stations
advertse the MCCAORP via the beacon frames. Since mesh stations outside the beacon reception range could
conflict with the existing MCCAOPs, mesh stations also includeftik 3 K M@CESBréservations in the

beacon frame. At the beginning of an MCCA reservation, mesh stations other than the MCCAOP owner refrain
from channel access. The owner of the MCCAOP uses standard EDCA to acressuimeanddoes not

have priority over statins that do not support MCCA. Although this compromises efficiency, simulations
reveal that high medium utilization can still be achieved with MCCA in the presence -tM@GA devices

[26] Z.After an MCCA transmission ends, mesh stations use EDCA for neaditention again.

4.2.5 Hybrid Wireless Me sh Protocol

The IEEE 802.11s standaubgestHWMP to provide both owlemand routing for predominantly mobile
topologies and proactive tredased routing for predominantly fixed infrastructure netwoxkse protocol

is not bound to HWMP since a functional equivalent protocol can be)ugad hybrid protocol is used when
an MP does not have an atemand route to another MP and sends the first packet to the root. Subsequent
packets can be sent along a shorteripétat is found directly.

4.2.5.1 On-Demand Routing

With an onrdemand routing protocol, the network is not required to use routes through the root node (or

even have a root node). Specifically, IEEE 802.11s MPs can use a route request (RREQ) and route reply (RREF
mechanism to discover link metric informati from source to destination. To maintain the route, nodes send
periodic RREQs where the time between two different RREQs transmitted at the same source is known as a
refreshround. Sequence numbers are used per refresind to ensure loogree operation To avoid

updating poor routes too quickly, hysteresis is used to maintain operation of the better route if the updated
RREQ from theriginal routeis lost or the RREQ from along another route is delivered first in a particular
round. Each best candidateute is cached for later use if loss occurs on a newly selected route.

4.2.5.2 Tree-Based Routing

When an MPP exists within the topology, the network can use proactive distance vector routing through the
root to find and maintain routes. The root annatgment is broadcast by the root MPP with a sequence
number assigned to each broadcast round. Each node updates the metric as the announcements are received
and rebroadcast. The MP chooses the best parent and caches other potential parents. Periodi@aiRREQs
sent to parents to maintain the path to the root. If the connection to the parent is lost (three consecutive
RREQSs), the MP will notify its children, find a new parent, and send a gratuitous RREP to the root, which all
intermediate nodes use to updataeir nexthop information about the source.

4.3 CIDNS as ZerdgConfiguration layer -3

Cjdng®is a networking protocola system of digital rules for message exchange between computers. The
philosophy behind cjdns is that networks should be easy to set @oguls should scale up smoothly and
security should be ubiquitous. Cjdns implements an encrypted IPv6 network using public key cryptography
for network address allocation and a distributed hash table for routing. The New Scientist reports that
"Instead ofletting other computers connect to you through a shared IP address which anyone can use, cjdns
only lets computers talk to one another after they have verified each other cryptographically. That means
there is no way anyone can be intercepting your tcaffi

19 hitps://github.com/cjdelisle/cjdns
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The cjdns program talks to other programs on the computer through a TUN device which the computer sees
as a regular network interface that accepts IP datagrams. Any program that uses IPv6 can communicate in a
cjdnsbased network without any modificationCjdns can communicate over wireless and Ethernet
connections as well as tunnel over the internet.

Cjdns addresses are the first 16 bytes (128 bits) of the doubles$RiAf the public key. All addresses must
begin with the byte OxFC, which in IPv6 retioly is a private address (so there is no collision with any
external Internet addresses).

The address is generated initially when a node is set up, through afomaed key generation process (keys
are repeatedly generated until the result of doubleASHL2 begins with OXFC). This process is unique, as it
guarantees cryptographically bound addresses (the double®BR2Af the public key), sourced from random
data (private key is random data, public key is the scalar multiplication of this data).

The roding engine stores its routing table in a distributed hash table similar to Kademlia. When forwarding
a packet, rather than looking up an entry using the traditional Kademlia approach of asking a node whose id
is similar to that of the target, cjdns forwds the packet to that node for further processing. In order to allow

a node to be in touch with many nodes despite being directly connected only to as few as one, there is a
switch layer which underlies the routing layer. The switch is inspired by MPL®grbut without the
universal uniqueness nor longevity of MPLS labels but instead with added ability to determine the source of
an incoming packet from its label and ability to determine whether a given node is part of the path
represented by a label, @nability to switch a label without any memory lookups. In iimplestterms: a

switch label is like driving directions to a destination.

It is designed so that every node is equal; there is no hierarchy or edge routing. Rather than assigning
addresses bged on topology, all cjdns IPv6 addresses are within the FC00::/8 Unique local address space
(keys which do not hash to addresses starting with 'FC' are discarded). Although nodes are identified with
IPv6 addresses, cjdns does not depend upon having Rwéently, each node may be connected to a few
other nodes by manually configuring links over an IPv4 or IPv6 network (the Internet). The ultimate goal is to
have every node connected directly by physical means; be it wire, optical cable or radio waves.

A CryptoAuth session between two given nodes is set up with apaaket handshake. Each of the two
packets contains the permanent and temporary keys of the sending node which are piggybacked on top of
normal data packets. The data in those packets is etedypsing the permanent keys. Once the temporary

keys have been exchanged, the permanent keys are no longer used in that session and the temporary keys
are discarded when the session ends so that the data sent during that session cannot be decrypted later.
Finally, it should be clarified thainge the handshake is piggybacked on top of the first two packets, the
maximum allowable packet size differs from packet to packet.

4.3.1 Routing considerations

Routing is designed such that each packet requireslitdeyhandling by an individual router, or node. Each
node will respond to 'search queries' asking it for other nodes nearby to it. This allows the sending node to
determine and add routes to its own routing table. Once the sending node has determmoetkait sends

its packet to the first node on said route. For each hop, the receiving node reads the packet's header to
determine where to next send the packet. Before the packet is forwarded to the next hop, the node performs
a bit shift on the packet'seaders, making it ready for use by the next node.

The Source routing used by cjdns has advantages for performance and extensibility. Nodes can use
experimental routing algorithms with existing meshes, and new releases of cjdns can change the default
routing algorithm without creating protocol incompatibilities. The major security problem of source routing,

IP address spoofing, is prevented by the @mebnd nature of cjdns encryption.

4.3.2 Security considerations

The belief that security should be ubitpus and unintrusive like air is part of the core philosophy behind
cjdns. The routing engine runs in user space and is compiled by default withsatasking protection,
positiorrindependent code, nowxecutable stack, and remapping of the global offsdtle as reaebnly
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(relro). The code also relies on antaac sandboxing feature based on setting the resource limit for open
files to zero, on many systems this serves block access to any new file descriptors, severely limiting the code's
ability to interact with the system around it.

4.4 Layer-7 components

After layer2 and layeB (auto)configuration,a set of layei7 services will be executed in each nodéese
services are nobnly related to theoperation of the DHTbut alsowith the global configuration of the edge
resource More specifically, thaervices that will b@re-installed on each deviosill be:

a) TheNetdata?® monitoring probewhich will be responsible to

b) TheContainerRuntime Enginavhich will be responsiblfr deploying and undeployingpntainers
c) TheConsut* DHTas a base key/vat store

d) ThePrEstoCloud Agenwhich coordinates the execution of all the above plus it provelé&EST
basedmanagement interface foexternal compnents

1
T
1
T

We will briefly elaborate each one of the laygcomponents

4.4.1 Netdata monitoring probe

Netdata is a system for distributed retane performance and health monitoring. It provides unparalleled
insights, in reatime, of everything happeningothe system it runs, using modern interactive web
dashboardqseeFigure4.6). Themonitoring framework is fast and efficient, designed to permanently run

on all syeems (physical & virtual servers, containers, 10T devices), without disrupting their core function.
Therefore, it is already ported on arbased architecturesBased on its benchmarking, rigssponds to all

gueries in less than 0.5 ms per metric, evenlaw-end hardwarewhile it supportsdynamic thresholds,
hysteresis, alarm templates, multiple reb@sed notification methods=urthermore, it is extensible singeu

can monitor anything you can get a metric for, using its Plugindreover, the libraryisauto-configurable

sinceit can collect up to 5000 metrics per server out of the eixally, several timseries baclends are
supported out of the box, inclidg RFometheug?s KA OK A& t NPadG2/ t2dz2RQa OK2A OS

20 https://github.com/firehol/netdata

21 https://consul.io

22 hitps://prometheus.io
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/proc/ loadavg

Figure4.6 Netdata monitoring probe configuration

The endpoint where monitoring streams are reported is configured byPtiestoCloud agent.

4.4.2 Container runtime engine

Containers offer a logical packaging mechanism in which applications can be abstracted from the
environment in which they actually run. This decoupling allows contdiaeed applications to be deployed
easily and consistently, regardless of whether theyéd environment which consists from edge resources

in our caseContainerization provides a clean separation of concerns, as developers focus on their application
logic and dependencies, while IT operations teams can focus on deployment and managethent wi
bothering with application details such as specific software versions and configurations specific to the app.
For those coming from virtualized environments, containers are often compared with virtual machines (VMSs).
You might already be familiar witvMs: a guest operating system such as Linux or Windows runs on top of a
host operating system with virtualized access to the underlying hardware. Like virtual machines, containers
allow you to package your application together with libraries and othgredeencies, providing isolated
SYGANRYYSyiGa F2N NHzyyAy3d @& 2dzNJ &2 FRigaredAN)StheSiBikidiasO S a ¢
end here as containers offex far more lightweight unit for developers and IT Ops teams to work with,
carrying a myriad of benefits.
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App 1 App 2 App 3
Bins/Libs Bins/Libs Bins/Libs
App 1 App 2 App 3
Guest 05 Guest 05 Guest 05
Bins/Libs Bins/Libs Bins/Libs
Hypervisar Container Runtime
Host Operating System Host Operating Systemn
Infrastructure Infrastructure
Virtual Machines Containers
Figure4.7 Containes vs VMs

Instead of virtualizing the hardware stack as with the virtual machapgsoach, containers virtualize at the
operating system level, with multiple containers running atop the OS kernel directly. This means that
containers are far more lightweight: they share the OS kernel, start much faster, and use a fraction of the
memorycompared to booting an entire O%o this end, in the frame #frEstoCloud®ocker Engirté will be

used as the defaulContainer engindt should be claified that all PrEstoTasks that will be executed in the
edge devices will bevrapped as containers

4.4.3 Consul DHT

Consul is a toobffering Distributed Hash Table capabilities developed mdimyservice discovery and
configuration.Theis distributed, highly available, and extremely scalabid it providesthe followingkey
features:

1 Key/Value Storage A flexible key/value store enables storing dynamic configuration, feature
flagging, coordination, leader election and more.

1 Service DiscoveryConsul makes it simple for services to register themselves and to discover other
services ia a DNS or HTTP interface. External services such as SaaS providers can be registered as

well.

1 Health Checking Health Checking enables Consul to quickly alert operators about any issues in a
cluster. The integration with service discovery prevents raptraffic to unhealthy hosts and enables
service level circuit breakers.

Finally,Consul is built to be datacenter aware, and can support any number of regions without complex
configuration.Furthermore, itruns on Linuxand supports 0T deploymentss behavior is also controlled by
the PrEstoCloud Agent.

4.4.4 PrEstoCloud Agent

The PrEstoCloud Agentresponsible tananagethe lifecycle ofall the components aboveFurthermore, it
proxies some of their functionalities acting ape@int of unification.The table below providean abstract
view of the method

Table4-1 Summary of API calis the PrEstoCloud Agent

Method Description

23 hitps://www.docker.com

20186 / 2L NAIKG tASE8 6A0GK GKS NBaLISOG/


https://www.docker.com/

PrEstoCloud GA 732339 Deliverable D3.9

AProacti ve

Cloud

Resources Mahiame mBing

/getNoddd

It returnsthe descriptive codef the edge resources g
configured by the CJDNS. Practically, itgkohalscope
IPv6 addresthat will not changesven upon the rebool
of the edge device.

/getDeviceContext

It returnsthe immutable metadata of the edge devic
such as architecture (e.g. arm), storageemory, cpu
type, cpuspeedetc.

/getAdjacenNodes

It returns the identifierof the neighbourhood nodeis
the format that is reported by the 802.11s driver

/getPublicKey

It returns the cryptographic public key that is assigr
to the edge resource durindpe CIJDNS bootstrappling

/setClusterHead

It enforces the edge resource to consi@especific node
Fa F &/ £dzZaGSNI I S RéED s
NBalLlRyairofS TF2NJ az2yvysS 4
YSI &dzNB Y Sy { wdklogupréedict®OdicA 2

/getClusterHead

It returns the current node identifier that is consideré
clusterheadby the resource.

/becomeClusterHezh

It instructs the edge resource twecomea cluster head
This practically means that the resource will st
beaconinghis fact to the atire mesh.

/deployContainer

It is used to store a container in the local contair
registry of the edge resource.

/getDeployedContainers

It is used to retrieve the containethat are already
NEIAAGSNBER Ay G(KS RSO@OAO

/deleteDeployedontainer

It instructs the edge resource to delete one contaif
from its local registry

/startDeployedContainer

It instructs the edge resource to initiate a container tk
already exists in its registry

/getRunningContainer

It returns the list of the unning containersn the edge
resource

/stopRunnin@ontainer

It instructs the edge resource to stop a runni
container.

/getMeasurementsForMetric

It returns a list of timestamped valuésat represent for
a set if metrics

Bat a her Edgesifogoeff

IputKeyValuePair Ittriggersal NI yal OGAz2y f &Lzl
/getValuesForKey It returns a list of values from the DHT
4.5 Testbed

For the sake oéxperimentationseveral edge resources have been employeadure4.5 illustratessome of
the devices that are being used.
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Figure4.8 Edge resources used duriRgEstoClou@xperiments

More specifically, the following devices have been used:

1 10Raspberyy Pi devices (Model 3B & Model 3B+)
9 1DJl Tello Drorté

1 5 Intel NU€s

1 several laptops

1 20WiP Mesh card¥

In the first phase of development, special emphasis has been given astaklished on of &ully dynamic
environment wherdemporalstorageis provided. In the second phase of the project, detaitethsurements
regarding the efficiency of the logical topology maintenance and the read/wtidethe DHT will be
conducted taking under consideratiamarious topology and mobility scenarios.

24 https://store.dji.com/product/tello

25 hitps://www.intel.com/content/www/us/en/products/boardskits/nuc.html

26 hitps://export.farnell.com/element14/wipi/donglewifi-usb-for-raspberry/dp/2133900?COM-=referral
noscript
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